
 
 

 
Hybrid Detection Mechanism for Spoofing Attacks 

in Bluetooth Low Energy Networks 
 

Hanlin Cai 
20122161 

 
Final Year Project – 2023/24 

BSc Robotics & Intelligent Devices 
 

 

 

 
 

 

Maynooth International Engineering College 
Fuzhou University 

Fujian, China 
 
 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the  
 BSc Robotics & Intelligent Devices 

 
 
 

Supervisor: Prof. Zhezhuang Xu 

 

  



 
 

 

 

 



Hybrid Detection Mechanism for Spoofing Attacks
in Bluetooth Low Energy Networks

Abstract

Bluetooth Low Energy (BLE) serves as a critical protocol for low-energy communication, play-

ing a vital role in various sectors including industry, healthcare, and home automation. Despite

its widespread adoption, inherent security limitations and firmware vulnerabilities expose BLE

to significant risks, notably from spoofing attacks that threaten device integrity and data pri-

vacy. Addressing this challenge, this project introduces BLEGuard, a hybrid detection mech-

anism specifically designed to identify spoofing attacks within BLE networks. BLEGuard inte-

grates pre-detection scheme, reconstruction techniques, and classification models to effectively

detect advanced spoofing threats. To refine and validate BLEGuard system, this project estab-

lished a physical Bluetooth testbed to simulate attacks and generated a large-scale BLE Spoofing

Attack Dataset (BLE-SAD). The experimental results demonstrate a high detection accuracy rate

of 99.02%, with a false alarm rate of 2.04% and an un-detection rate of 0.37%. These findings

highlight BLEGuard’s effectiveness in enhancing the security of BLE networks, proving its poten-

tial as a robust solution to safeguard against sophisticated cyber threats in real-world applications.

Keywords: Network Systems, Security and Privacy, Time-series AnomalyDetection,

Machine Learning
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Hybrid Detection Mechanism for Spoofing Attacks in Bluetooth Low Energy Networks

Chapter 1 Introduction
1.1 Research Topic and Motivation
Named after the Viking King Harald Bluetooth, who was known for his role in unifying Dan-
ish tribes, Bluetooth technology has become a ubiquitous standard for short-range wireless com-
munications. Since its inception, Bluetooth has revolutionized the way devices interact in close
proximity[1]. The advent of the Bluetooth Low Energy (BLE) standard has further solidified its
dominance, especially in the burgeoning era of the Internet of Things (IoT) and the emerging tech-
nologies of 6G communications[2]. BLE’s low power requirements and high functionality make
it an ideal choice for a multitude of IoT applications ranging from industrial automation to health
monitoring, ensuring seamless connectivity between billions of devices. By 2027, the deployment
of BLE devices is anticipated to burgeon to an astonishing 7.5 billion[3].

This exponential adoption, however, is overshadowed by significant security challengeswithin
the BLE networks. BLE-enabled devices are prone to a diverse array of sophisticated attacks due
to inherent I/O limitations and firmware vulnerabilities. These threats include zero-day exploits,
where attackers exploit undisclosed vulnerabilities[4], DDoS (Distributed Denial of Service) at-
tacks that cripple network services[5], and particularly spoofing attacks[6].

Spoofing attacks are alarmingly prevalent and concerning due to their low initiation costs
and minimal hardware requirements, making them a preferred tactic among attackers. In these
attacks, perpetrators impersonate legitimate devices, misleading network participants to intercept
or manipulate sensitive data[7]. This undermines the integrity and confidentiality of BLE systems,
facilitating unauthorized access and data breaches. The ease and low cost of initiating these attacks
underscore the urgent need for the development of advanced detection mechanisms. These mech-
anisms must be capable of identifying and mitigating the sophisticated tactics used in spoofing
attacks, thereby enhancing the security posture of BLE networks against these pervasive threats[8].

1.2 Problem Statement
To combat these security threats, an out-of-the-box monitoring system has been introduced, lever-
aging BLE’s cyber-physical features to fortify defenses against spoofing attackers[9]. Addition-
ally, various research initiatives employ machine learning techniques to detect anomalous patterns
within BLE network traffic. A particularly promising learning framework that integrates recon-
struction and classificationmodels has been developed to identify network packets as either benign
or malicious with remarkable precision[10].

Unfortunately, most existing methods grapple with the significant challenge of harmonizing
detection accuracy, false positive rates, and resource utilization. This delicate balance severely re-
stricts their applicability across a broader spectrum of real-world scenarios[6]. There is a pressing
need for a more adaptable and efficient solution, which can uphold stringent detection standards
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while effectively managing resource constraints. Such an innovation would significantly broaden
the utility of security frameworks, extending their deployment across a wider variety of environ-
ments and devices. This expansion is crucial for bolstering defenses against spoofing attacks in
increasingly diverse and resource-constrained settings[11].

1.3 Approach and Metrics
Therefore, this project aims to introduce a novel detectionmechanism that leverages cyber-physical
analysis andmachine learning techniques. Specifically engineered to detect sophisticated spoofing
attacks, this mechanism combines extensive offline training with critical real-time online analysis.
In pursuit of this goal, we will establish a tangible BLE network system for conducting attack sim-
ulations and compiling a large-scale network dataset. This broad and verifiable dataset is crucial
for advancing research within the domain and ensuring the robustness of our findings. A series of
experiments utilizing diverse datasets will be conducted to test the viability of the detection mech-
anism proposed. Subsequent to these tests, a meticulous assessment of the experimental results
will be performed, and their profound implications for real-world applications will be analyzed.

1.4 Contributions of this Project
In this project, we propose BLEGuard, an innovative detection mechanism designed to enhance
security in Bluetooth Low Energy networks. Additionally, we present BLE-SAD, an extensive
network dataset generated from our specialized physical testbed. Our contributions are threefold:

• Development of the BLE-SAD dataset, which includes around 906,000 packets, tailored specifi-
cally for the training and evaluation of our models.

• Design and empirical validation of BLEGuard, which is proposed for effective detection of spoof-
ing attacks.

• Integration capabilities of BLEGuardwithin BLE networks, designed to ensure effective detection
without disrupting existing network operations or depleting network resources.

1.5 Structure of this FYP Report
The structure of this final year project report is organized for clarity and depth of understanding:
Chapter 2 provides an overview of the technical background and related works essential for un-
derstanding the context of this project. Chapter 3 outlines the three principal research questions
this project seeks to resolve, emphasizing their practical implications. Chapter 4 explicates the
creation and deployment of BLE-SAD dataset, alongside the formulation of BLEGuard mecha-
nism. Chapter 5 presents the experimental results, assessing the effectiveness of the BLEGuard
system. Finally, Chapter 6 concludes the project, summarizing key findings and contributions.
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Chapter 2 Technical background
2.1 Topic material
2.1.1 Basics of Bluetooth Low Energy

Bluetooth LowEnergy (BLE) is often the technology of choice for networkswhere energy-efficient
and cost-effective communication is paramount. This is especially commonwith low-cost, energy-
constrained devices like temperature sensors that capture specific data attributes and wirelessly
transmit this information to user devices, like smartphones. BLE operates using three dedicated
radio frequency (RF) channels (37, 38, and 39) for advertising, which is the process of broadcast-
ing the presence of a BLE device to initiate a connection[1]. These are known as the advertising
channels. Once a connection is established, the remaining channels, known as data channels, are
used for the ongoing communication between devices.

The typical communication protocol in a BLE network encompasses four main stages: adver-
tising, connecting, pairing, and data accessing[9]. The advertising stage is where the BLE device
announces its availability to connect. In the connecting phase, a user device responds to this
advertisement, establishing a bidirectional link. Pairing is the next crucial step, where security
credentials are exchanged, forming the foundation for a secure communication. Finally, in the
data accessing stage, the authenticated user device is able to read or write the data from or to the
BLE device. Figure 2-1 shows a typical network packet during the BLE communication, which
includes data with time-series features such as packet number, timestamp, and payload data.

Figure 2-1 Sample data of a typical BLE network package.

2.1.2 Spoofing Attacks in BLE Networks

The spoofing attack is a type of cybersecurity attack wherein an attacker impersonates a legitimate
BLE device or network entity[7]. In such attacks, the perpetrator typically masquerades as a trusted
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BLE device using forged information, such as a spoofed MAC address or other identifying details,
as illustrated in Figure 2-2(a). In the context of a spoofing attack, the cyber-physical features
of the BLE network are notably impacted, leading to significant deviations from typical benign
scenarios. For instance, an anomalous shift in the RSSI (Received Signal Strength Indicator)
values of the advertising packets can signal the presence of a spoofing attack, as depicted in Figure
2-2(b). These deviations provide critical indicators that can be used to effectively identify potential
malicious activity[12].

Figure 2-2 (a) Spoofing attack in BLE sensor network and (b) observed RSSI values during
attack simulation.

Given the unique characteristics of BLE networks, this project has successfully identified and
utilized four key cyber-physical features to enhance the detection algorithm and to facilitate the
training of learning models:

• Used Channel Numbers (UCN): These denote the specific data channels employed during the
transmission of BLE packets, crucial for analyzing communication patterns.

• Advertising Interval (INT): This measures the temporal interval between consecutive packets
transmitted on the same advertising channel, vital for detecting timing anomalies.

• Received Signal Strength Indicator (RSSI): This feature represents the signal-to-noise ratio
gleaned from packet exchanges, providing insights into the physical layer connectivity.

• Carrier Frequency Offset (CFO): Refers to the discrepancy between the expected and the ac-
tual carrier frequencies used in BLE communications, indicating potential frequency drifts or
unauthorized channel usage.

2.1.3 Related Research Findings

The BLE specifications[13] provide a range of authentication mechanisms theoretically designed to
prevent spoofing attacks. However, these mechanisms often fail to achieve their intended purpose
in practice due to three main reasons:
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• (1) Limited Device I/O Capabilities: A significant number of BLE devices have limited I/O
capabilities, which precludes them from utilizing any robust authentication mechanisms. It is not
surprising that recent research has shown that over 80% of current BLE devices communicate
with user devices in plaintext without any form of authentication[14].

• (2) Persistent Security Vulnerabilities: For BLE devices that do implement various security
measures, there are still numerous attack vectors at both the protocol level and application level
that malicious actors can exploit to conduct spoofing attacks[9].

• (3) Insufficient User Awareness: Users of BLE devices may lack awareness or the technical
knowledge required to enable and configure security features properly, leading to increased sus-
ceptibility to spoofing attacks[11].

Additionally, the challenge of implementing software-based solutions (i.e., firmware updates for
BLE devices or software patches on user devices) to these security vulnerabilities is compounded
by four major practical challenges:

• (1) Ineffectiveness Against Zero-Day Exploits: The nature of software patches does not allow
them to preemptively protect against zero-day vulnerabilities, which can be immediately exploited
by attackers upon discovery[4].

• (2) Fragmented Update Ecosystem: The diversity in BLE device manufacturers leads to a frag-
mented ecosystem for firmware updates, which complicates the process of applying uniform se-
curity patches across devices.

• (3) Legacy Device Constraints: A considerable number of legacy BLE devices in use are inca-
pable of being updated due to outdated I/O capabilities, leaving them vulnerable to new exploits.

• (4) Resource Constraints for Update Dissemination: Many manufacturers of BLE devices
may face resource constraints that impede the timely development and distribution of necessary
firmware updates, further exacerbating security challenges[15].

2.2 Technical material
Throughout the development of the BLE network testbed and the subsequent collection of the
network dataset, this project employed a variety of technical tools to facilitate data acquisition
and analysis. Given the extensive range of tools and methodologies utilized, a comprehensive
explanation of each is beyond the scope of the main text. Detailed descriptions and justifications
for these tools are therefore provided in Appendices 1. Below are examples of the categories of
technical tools used:

• Attacker Platforms: Tools such as Mirage[16], Ostinato[17], and custom scripts designed to em-
ulate spoofing attack scenarios.

• Network Sniffers: Tools like Wireshark, Ubertooth, BLE-Analyzer-PRO and HCI snoop log.
• Data Acquisition Systems: Automated systems like nRF Connect for data logging and analysis.
• Simulation Software: Network simulators like GNS3[18] used for virtual testing and modeling.
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Chapter 3 Research Problem
This Chapter is dedicated to outlining the core objectives of this project, structured around three
major questions that it seeks to address. The intent of this chapter is to present these pivotal
questions, providing a clear statement of the problems this project aims to solve within the domain
of BLE network security. Wewill also delineate our project’s contributions to the field, underlining
the potential impact and advancements our findings offer to the existing body of knowledge.

3.1 Problem I: Real-Time Spoofing Detection
• Problem I: How can we achieve real-time, precise analysis to efficiently identify advanced
spoofing attackers?

The ability to identify spoofing attacks as they occur is paramount in safeguarding BLE net-
works. Real-time analysis ensures that security measures can react instantly to potential threats,
mitigating risks before they materialize into breaches. Precision in detection is equally crucial to
avoid the costs associated with false alarms. By solving this problem, the positive impact would
be two-fold: the creation of a more secure network environment and the assurance of user trust
through the reliable protection of sensitive data.

3.2 Problem II: Efficiency and Impact Minimization
• Problem II: How do we ensure that our detection mechanism remains efficient while min-
imizing its side effects on system operations and energy consumption?

An efficient detectionmechanismmust operate with minimal impact on the system it protects.
Excessive energy consumption or operational delays can be as detrimental as the threats they aim
to prevent. Achieving this balance is crucial for the viability of security solutions in energy-
constrained environments. By addressing this challenge, the resultant detection mechanism can
be widely adopted, ensuring broad-scale security that is both effective and sustainable.

3.3 Problem III: Reproducibility and Benchmarking
• Problem III: How do we ensure the reproducibility of our proposed solution and establish
a new benchmark dataset to foster progression in this field of research?

Reproducibility is the cornerstone of scientific advancement. Ensuring that our solution can
be independently verified by other researchers reinforces the validity of our findings. Furthermore,
by establishing a new benchmark dataset, we contribute a valuable resource that catalyzes further
research. This not only demonstrates the practicality of our solution but also propels the field
forward, providing a foundation for future innovations in BLE network security.

Each of these challenges pertains to a vital facet of BLE network security. Detailed resolu-
tions to these challenges will be elucidated in the subsequent chapter.
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Chapter 4 Research Solution
4.1 Environment Setup
In this section, we will detail the construction of BLE network testbed, as well as comprehensive
information regarding the deployment environment and the devices involved. To ensure the relia-
bility and reproducibility of the experiments, all hardware devices and software platforms utilized
are readily accessible and well-documented on the Internet.

4.1.1 Testbed Implementation

In a word, the testbed environment can be categorized into four parts: (i) BLE devices, (ii) user
devices, (iii) attacker platforms, and (iv) network sniffers. Table 4-1 comprehensively illustrates
all the components utilized in the network testbed.

Table 4-1 Components of proposed BLE network testbed.

Component Description Devices Example

BLE devices Used to build the BLE cyberspace environment nRF51822, DA14580 chips
User devices Used to connect and simulate usage scenarios Apple laptop, Android phone

Attacker platforms Used to launch advanced spoofing attacks CSR dongle, Lenovo laptop
Network sniffers Used to capture network advertising package Raspberry Pi, BLE-Analyzer

4.1.2 Deployment Environment

The testbed was strategically deployed within a physical environment: a 15m× 15m office space
configured with 18 cubicles, as illustrated in Figure 4-1. The office was methodically partitioned
into 1m× 1m grids. This setting typifies a complex and acoustically active indoor environment,
presenting significant challenges for evaluating the detection efficiency of BLEGuard. During
data collection, RF signals were monitored within the range of our sniffers, uncovering consid-
erable channel interference. This interference was primarily caused by 40 devices equipped with
Bluetooth or BLE technologies, including smartphones, speakers, mice, and keyboards, along
with numerous Wi-Fi access points and two microwave ovens. It was also noted that the sudden
movements of individuals within the office substantially affected the channel conditions, further
complicating the monitoring environment.

4.1.3 BLE Devices

For the construction of our network testbed, we utilized sixteen commonly used BLE devices
featuring a range of Bluetooth chips, including nRF51822 and DA14580, as catalogued in Table
4-2. After evaluating their performance, we selected nine devices that demonstrated consistent
stability, suitable for our data collection needs. These devices represent a wide array of typical
BLE applications, providing a comprehensive overview of potential real-world uses.
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Table 4-2 BLE devices used in proposed network testbed.

ID Device Name Manufacturers Device Type 
1 Indoor Sensor Xiaomi Industry 

2 Smart Lock Xiaomi Smart Home 

3 Mijia Speaker Xiaomi Entertainment 

4 HomePod v2 Apple Entertainment 

5 Dell Speaker Dell Entertainment 

6 Lenovo Speaker v2 Lenovo Entertainment 

7 Smart Lock August Smart Home 

8 Key Finder Nutale Smart Home 

9 nRF52 DK Board Nordic Industry 

10 Mi Smart Light Bulb Xiaomi Smart Home 

11 Mi Smart Scale Xiaomi Smart Home 

12 Mi Band v8 Xiaomi Health Care 

13 Door & Window Sensor Eve Smart Home 

14 Button Remote Control Eve Smart Home 

15 Energy Socket Eve Industry 

16 Sport Band v4 Huawei Health Care 

 

4.1.4 User Devices

In our testbed, user devices are employed to connect with BLE devices, simulating typical network
scenarios. Monitoring software has been implemented on user laptops and PCs to facilitate inter-
action with network sniffers and to collect datasets. Table 4-3 details the user devices employed
within our network environment. Additionally, while approximately 40 other network devices are
present in our deployment office, data collection is exclusively focused on the BLE devices we
specifically deployed, with no data recorded from any unidentified devices.

4.1.5 Attacker Platforms

To generate multiple spoofing attacks, we deployed four distinct types of attacker platforms, each
comprising three identical samples situated at different locations. The specifics of the attacker
platforms used in our testbed are outlined in Table 4-4. We opted for these platforms due to their
accessibility, programmability, and utilization of various transmit power values[19]. In addition,
we provided theMAC address for each device to distinguish between identical devices performing
different functions, since we have multiple duplicate copies.
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4.1.6 Network Sniffers

Within the office environment, three network sniffers were precisely positioned at predetermined
grid coordinates, each powered by a Raspberry Pi running BLE-Analyzer-PRO software. This
adaptable platform, suitable for further development, enabled the detailed capture of network
packets and their cyber-physical features. The Raspberry Pi also managed the transmission of
the collated datasets to the monitoring systems. The total cost of this sniffer configuration was
approximately 80 dollars, demonstrating a budget-friendly approach to comprehensive network
monitoring. For a more in-depth overview of the sniffer equipment used, refer to Appendices 1.

Table 4-3 User devices used in BLEGuard testbed.

Device Name Operating System MAC Address 
Lenovo V15-IIL Windows 10 Pro 0d:76:9a:3f:e7:0b 

MacBook Pro M1 macOS 13.1 0f:2e:4d:1a:8c:5b 

Google Pixel 7 Android 13 08:5b:3c:2f:a1:6d 

iPhone 13 iOS 16 0a:9f:7e:2d:6b:8f 

Surface Laptop 5 Windows 11 06:3d:1f:7e:a8:4c 

Dell 7050 PC Windows 10 Pro 0b:4a:5e:2c:9f:7d 

 

Table 4-4 Attacker platform used in BLEGuard testbed.

Device Name Operating Platform MAC Address 
Lenovo 15IIL laptop Mirage tool 04:6c:59:05:9c:8a 

CSR 4.0 BT dongle Mirage tool 02:42:07:cd:65:a4 

HM-10 development board Mirage tool 02:42:13:02:c7:f0 

CYW920735 development board Ostinato tool 00:16:3e:0d:95:65 

 

4.2 Data Preparation
This section delineates the procedures for implementing the network testbed, simulating spoofing
attacks, and constructing network datasets. To ensure the reliability and reproducibility of our
experiments, we will make both our data and the associated code publicly accessible[20].

4.2.1 Attack Simulation

As mentioned above, the BLEGuard system was operationalized within the testbed using user
monitoring devices and network sniffers. These devices collaborated to manage the collection of
network datasets, utilizing theWireshark tool to analyze traffic. The coordination of network activ-
ities, from communication between monitors and sniffers to the exchange of advertising packets
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Figure 4-1 Locations of three types of devices in BLEGuard testbed.

and gathering of cyber-physical features, was handled by a Python script comprising approxi-
mately 2000 lines of code. This principal script is included in the supplementary materials.

4.2.2 Data Pre-processing

As outlined in Table 4-4, four types of attacker platforms were strategically deployed, with three
units of each type, across twelve distinct locations. This setup enriched the cyber-physical feature
datasets, particularly for RSSI and CFO.Figure 4-1 visually represents this arrangement within the
testbed environment, where sixteen BLE devices are marked by blue circles, six sniffers by green
squares, and twelve attacker platforms by red triangles. In the simulated attack scenarios, identity
information was cloned using USB dongles, the Mirage tool[16], and the Ostinato tool[17] to disrupt
normal network connections between BLE devices and user devices. This experiment underscores
the ease with which advanced attackers could exploit vulnerabilities in BLE to manipulate device
settings, posing significant security risks.

4.2.3 Datasets Building

Regarding the building of our dataset, we meticulously collected normal advertising packets from
each BLE device over a period of approximately eight hours—five hours during daytime and three
hours at nighttime. Additionally, for each attacker platform situated in various positions, malicious
packets were collected for about 20 minutes. Currently, our BLE Spoofing Attack Dataset (BLE-
SAD) contains 906,000 advertising packets, of which 81.6% are benign and 18.4% are malicious.
The open-source dataset can be accessed at: https://github.com/BLEGuard/supplement.
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4.3 Detection Mechanism
In this section, we will discuss our proposed BLEGuard system, a hybrid detection mechanism
combined cyber-physical analysis with machine learning techniques.

4.3.1 Pre-detection Scheme

In BLEGuard, suspicious activities are identified through the detection of atypical fluctuations
in cyber-physical features such as Used Channel Numbers (UCN), Advertising Interval (INT),
Carrier Frequency Offset (CFO), and Received Signal Strength Indicator (RSSI). Abrupt changes
in UCN and INT may indicate potential security threats, while RSSI and CFO are crucial for a
continuous pre-detection mechanism that anticipates advanced spoofing attacks.

To effectively monitor these indicators, BLEGuard employs three network sniffers that cap-
ture the values of these features within a lookback window. The lookback window refers to a
predefined period prior to the current analysis point, during which data is collected to establish a
baseline for normal behavior. This historical data is essential for understanding typical network
conditions and variations. Subsequently, the system evaluates the current network activity by ex-
amining the values from an observation window, which is the period immediately following the
lookback window. This approach allows BLEGuard to compare present data against the baseline
to spot any irregularities or deviations.

An alarm is triggered if there are deviations from the established norms in any of the mon-
itored features, indicating a potential security breach. This method can be seamlessly integrated
into existing BLE networks without causing disruption or significant resource consumption. De-
tailed detection schemes for each feature are outlined as follows:

•Metric 1: Used Channel Numbers
In BLE networks, Used Channel Numbers (UCN) designates the sequence of radio channels that
BLE devices utilize for transmission, adhering to a preconfigured pattern to enhance connectivity
and reduce noise interference. The stability of UCN patterns can be compromised during spoofing
attacks, as attackers may instigate an irregular shift in the communication channels, thus disrupting
the network’s harmonious channel utilization. To quantify such fluctuations, we introduce the
metric UCNchange, which represents the cumulative measure of channel switching activity:

UCNchange =

Nobs∑
i=1

|UCNi − UCNi−1| , (4-1)

where Nobs is the count of observed transmission packets and UCNi corresponds to the uti-
lized channel for the ith packet transmission. An elevated UCNchange value is indicative of more
frequent channel alternations, potentially signaling an ongoing spoofing attack. For operational
integrity in BLE networks, an acceptable threshold for UCNchange, denoted by ∆UCNnormal, is
set at 2.8. This threshold indicates the maximum allowable frequency of channel changes within
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a defined observation period. A breach of this threshold is symptomatic of anomalous behavior:

If UCNchange > ∆UCNnormal, then activate further detection. (4-2)

EmployingUCNchange as a heuristic enables a robust security framework capable of detecting
and responding to potential spoofing threats, thereby fortifying the BLE network’s defenses.

•Metric 2: Advertising Interval
The Advertising Interval (INT) is also a key parameter in BLE communications, defining the time
gap between consecutive advertising packets. This interval is crucial for maintaining the orderly
transmission of broadcast information in BLE networks. By definition, the INT between any two
consecutive advertising packets should never fall below a predefined lower bound, which is set
based on the specifications of the BLE device and the operational requirements of the network.
This lower bound is denoted as Lint. The formula used to compute the runtime INT value, INT ,
for the interval between two packets is given by:

INT = Tcurrent − Tprevious (4-3)

where Tcurrent is the timestamp of the current advertising packet, and Tprevious is the timestamp
of the immediately preceding advertising packet. The Advertising Interval (INT) is calculated as
the difference between these two timestamps. If INT is found to be less than the predefined lower
limit Lint, the monitor identifies this condition as anomalous. Such a scenario indicates a potential
operational fault or a security breach, such as a spoofing attack that attempts to flood the network
with frequent, unauthorized advertising packets. Upon detecting such an anomaly, the monitor
triggers an alarm, alerting the system to the potential threat. Typically, Lint is set to a threshold
value of 10 milliseconds to detect rapid, unscheduled transmissions[9]. The corresponding condi-
tion can be mathematically expressed as:

If INT < Lint, then activate further detection. (4-4)

This monitoring mechanism ensures the integrity and correct functioning of the BLE network
by verifying that the advertising packets are transmitted within the expected intervals, adhering to
the designed operational parameters.

•Metric 3: CFO level
BLEGuard continuously monitors the CFO (Carrier Frequency Offset) and RSSI (Received Sig-
nal Strength Indicator) values from advertising packets. Upon activation of the CFO and RSSI
inspection, BLEGuard analyzes these values through the following procedure. For a BLE device
exhibiting intermittent advertising patterns, we define the lookback window as the time period Tl

(with Nl packets) before the transition from advertising to connection state, and the observation
window as the time period To (withNo packets) after the transition from connection back to adver-
tising state. In BLEGuard, following the reception of a connection request packet, the monitoring
system initiates the CFO and RSSI inspections for advertising packets collected from each device
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across the three advertising channels (37, 38 and 39). The system first calculates the acceptable
ranges for CFO and RSSI values using data from the lookback window. It then evaluates these
metrics in the advertising packets during the observation window. If an anomaly is detected in
either the CFO or RSSI readings, an alarm is triggered.

The CFO values observed from BLE networks are expected to conform to a Gaussian distri-
bution[9]. Consequently, when µ0 and σ0 represent the mean and standard deviation of these CFO
values, the probability distribution function for the CFO can be articulated as:

Fcfo(xi) =
1

σ0

√
2π

· e
− (xi−µ0)

2

2σ2
0 (4-5)

where xi denotes a sample CFO value. In BLEGuard, the monitor employs the CFO values
from advertising packets within a lookback window, comprising Nl packets, to calculate µ0 and
σ0. These parameters are then integrated into the probability function previously mentioned. If the
advertising packets from both the lookback and subsequent observation windows originate from
the same BLE device, the CFO values from the observation window’s advertising packets should
statistically align with the given distribution. This is verified by the monitoring system calculating
the negative log-likelihood of the CFO values from the observation window packets, defined as:

Lcfo =
1

No

No∑
i=1

− logFcfo(xi) (4-6)

If the log-likelihood value is less than a predetermined CFO inspection threshold, denoted
by βcfo (i.e., Lcfo < βcfo), the CFO values are considered to be within the normal range for
the BLE device. This threshold βcfo is a tunable parameter within BLEGuard that dictates the
permissible range of CFO values during the observation window. In contrast, if the log-likelihood
value exceeds βcfo (i.e., Lcfo > βcfo), an anomaly is recognized, and an alarm is activated,
signaling a possible spoofing attack. In most real-world scenarios, βcfo is generally set to 3.

•Metric 4: RSSI level
To detect anomalies in RSSI values amid strong signal reflections in BLE networks, we utilize
a two-component Gaussian mixture model. This approach is chosen because RSSI values in en-
vironments with high noise can be effectively modeled using two normal distributions[21]. The
probability distribution function for RSSI values is given by:

Frssi (yi) = w · 1

σ1

√
2π

· e
− (yi−µ1)

2

2σ2
1 + (1− w) · 1

σ2

√
2π

· e
− (yi−µ2)

2

2σ2
2 (4-7)

In this equation, µ1 and µ2 are the means of the two components, σ1 and σ2 are their stan-
dard deviations, w is a weight parameter that balances the two components, and yi is an RSSI
sample. Using the BLEGuard system, Nl of RSSI values from advertising packets within a look-
back window are analyzed to estimate the parameters µ1, µ2, σ1, σ2, andw through a conventional
expectation-maximization (EM) algorithm[22]. Following this, the monitor calculates the negative
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log-likelihood that the RSSI values (yi, ∀i ∈ [1, No]) from the observation window conform to the
model specified by Equation (4-7):

Lrssi =
1

No

No∑
i=1

− logFrssi (yi) (4-8)

An anomaly is detected when the negative log-likelihood surpasses a predefined RSSI in-
spection threshold, denoted as δrssi (i.e., Lrssi > δrssi). The threshold δrssi is a crucial parameter in
BLEGuard, calibrated to optimize detection sensitivity and specificity. Typically, δrssi is set to 5.

4.3.2 Reconstruction Model

Upon identifying suspicious activities, a thorough analysis is initiated on anomalous data batches.
To facilitate this, a Temporal Convolutional Network (TCN)[23], as illustrated in Figure 4-2, is
employed to reconstruct traffic patterns. This approach helps isolate aberrant data through com-
parative analysis. A TCN is a type of neural network specifically designed for sequence modeling
that combines convolutional layers with causal connections to ensure that predictions for a specific
time step can only depend on past data. This structure makes TCNs particularly effective for time
series predictions where past context is crucial.

During the offline training phase, the objective is to minimize the discrepancy between the
learned dataDL and the original datasetDT . In the online testing phase, the presence of malicious
packets in the input data triggers an increase in the reconstruction error, indicative of potential
spoofing threats. The residual, defined as R(DT , DL) = |DT −DL| with DL = f(DT ), where
f represents the transformation function employed by the TCN auto-encoder, serves as a critical
metric. This residual is assessed to calculate the anomaly score α for each data batch, as depicted
in Equation (4-9). Here, Rα denotes the calculated residual, µ is the mean value of the residual,
and σ is its standard deviation. Figure 4-2 demonstrates how benign inputs lead to benign outputs,
whereas malicious inputs result in malicious outputs, showing the operational mechanism of TCN.

α =

{
0, when |Rα − µRα| ≤ 3 ∗ σRα → Normal Data Batch

1, when |Rα − µRα| > 3 ∗ σRα → Suspicious Data Batch
(4-9)

4.3.3 Classification Models

Following the identification of suspicious data batches, the next step involves classifying these
packets into two categories: benign or malicious. In this research, a text-convolutional neural net-
work (text-CNN)[24] is employed for the extraction of traffic features. Text-CNNs are specialized
types of convolutional neural networks designed to handle text data. They apply convolutional lay-
ers to extract higher-level features from text data structured as input vectors, making them highly
effective for tasks involving natural language processing and text analysis.
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Figure 4-2 Operational mechanism of the temporal convolutional network.

Figure 4-3 The general architecture of the classification models.

For packet classification, this project employs four cost-efficient classifiers: Support Vector
Machine (SVM)[25], K-Nearest Neighbors (KNN)[10], RandomForest (RF)[24], andNaïveBayes[26].
This multi-classifier approach helps to mitigate potential biases in text analysis by diversifying the
analytical perspectives. Network payload-based features are generated by converting the payload
bytes into low-dimensional vectors using Word2Vec techniques, which effectively capture the se-
mantic relationships within the data. These vectors form the input for the text-CNN, where key
traffic features are extracted. The features extracted by the text-CNN are then concatenated with
statistical features to create a comprehensive feature set for the final classification models.

The workflow for packet classification using text-CNN is illustrated in Figure 4-3, where it
can be seen how raw data is transformed through various stages of processing to classify packets
accurately as either benign or malicious.
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4.3.4 System Overview

BLEGuard is designed to optimize the balance between detection accuracy and power consump-
tion. As depicted in Figure 4-4, the system employs a flexible approach where the pre-detection
algorithm is utilized to maintain efficiency under GPU resource constraints, minimizing power
and computational overhead. In scenarios where high detection accuracy is paramount, the recon-
struction model is activated to enhance analytical precision. Moreover, the classification models
within BLEGuard are adept at precisely identifying malicious advertising packets, providing tar-
geted feedback that significantly augments the efficacy of the detection modules. This versatile
framework ensures that BLEGuard can adapt to varying operational demands, therebymaintaining
robust security measures without compromising on network performance.

Figure 4-4 The overall workflow of BLEGuard detection mechanism.

In this chapter, we have provided a comprehensive description of the construction process for
the BLE-SAD dataset, as well as a detailed exposition of the mathematical models and operational
mechanisms underpinning the BLEGuard System. The subsequent chapter will delve into the
specific parameter settings of the models, as well as present the experimental data and results,
demonstrating the effectiveness of BLEGuard in various testing scenarios.
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Chapter 5 Evaluation
5.1 Experiment Preparation
This section describes the experimental framework used to evaluate the efficacy of the BLEGuard
system. The settings are meticulously designed to mimic realistic scenarios in which BLE net-
works operate, ensuring that the results are both robust and applicable to real-world applications.

5.1.1 Experimental Details

The BLE-SAD dataset was compiled from nine distinct BLE devices, with their information de-
tailed in Appendices 1-1. The dataset was divided into training and testing sets at a ratio of 8.5 to
1.5, comprising 762,850 effective BLE network packets for training and 134,088 for testing, re-
spectively. The model training was conducted using an Intel Core i5-13600 CPU processor (3.50
GHz) with 32GB of RAM and an NVIDIA GeForce RTX 4060 Ti GPU equipped with 24GB of
memory. The algorithms were implemented in Python 3.8, utilizing the PyTorch 1.8.1 framework.

5.1.2 Parameter Settings

In BLEGuard’s Pre-detection Scheme, four crucial parameters (∆UCNnormal, Lint, βcfo, and δrssi)
aremeticulously configuredwithin specific ranges tomaximize detection accuracy, as summarized
in Table 5-1. These settings are the result of comprehensive testing and fine-tuning, ensuring that
BLEGuard efficiently and reliably identifies spoofing attacks within BLE networks.

Table 5-1 Optimal Parameter Settings for the Pre-detection Scheme.

Network Features Parameter Setting Range Optimal Setting
Used Channel Numbers (UCN) ∆UCNnormal (2.0, 5.0) 2.8
Advertising Interval (INT) Lint (5.0, 20.0) ms 10.0 ms
Carrier Frequency Offset (CFO) βcfo (1.0, 5.0) 3.0
Received Signal Strength Indicator (RSSI) δrssi (3.0, 10.0) 5.0

Additionally,Table 5-2 provides a detailed account of the Temporal Convolutional Network’s
configuration, designed to process dynamic time-series data for immediate anomaly detection.
Table 5-3 expounds on the hyperparameters of the text-convolutional neural network model, em-
ployed to categorize packet data effectively into benign or malicious classes.

5.2 Performance Evaluation Metrics
In an effort to mirror a realistic network environment, the BLE-SAD dataset was intentionally
constructed with an imbalanced proportion of benign to malicious packets. This imbalance, char-
acterized by a predominance of benign samples, can induce skewed results. Consequently, the
conventional metric of accuracy loses its representativeness and reliability as a sole measure of
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Table 5-2 The hyperparameters of the temporal convolutional network network.

Hyperparameters Value 
Optimizer RMSprop 

Learning rate 5e-4 
Kernel size 8 

Number of filters 9 
Loss function MSE 
Hidden units 10 
Dropout rate 0.05 

Gradient clipping 1 
 

Table 5-3 The hyperparameters of the text-convolutional neural network.

Hyperparameters Value 
Optimizer Adam 

Learning rate 1e-4 
Batch size 50 

Epoch number 50 
Loss function Binary cross-entropy 

Validation metric Accuracy 
Validation split 0.2 

Deep learning framework PyTorch 1.8.1, Gensim (WordVec) 3.7.1 
 

performance evaluation in such contexts. To mitigate the risk of biased analysis, more robust
metrics like False Alarm Rate (FAR) and Un-detection Rate (UND) have been advocated for[10].
Therefore, in our performance evaluation, we extend beyond mere accuracy and incorporate FAR
and UND. Table 5-4 presents these evaluation metrics along with their respective formulas, defin-
ing TP, TN, FP, FN as follows:

• TP (True Positive): Represents the number of malicious packets correctly classified as malicious.
• TN (True Negative): Represents the number of benign packets correctly identified as benign.
• FP (False Positive): Represents the number of benign packets incorrectly identified as malicious.
• FN (False Negative): Represents the number of malicious packets incorrectly identified as benign.

Table 5-4 Formula for three evaluation metrics

Evaluation metrics Corresponding formula

Accuracy TP+TN
TP+TN+FP+FN

× 100%

False alarm rate (FAR) FP
FP+TN

× 100%

Un-detection rate (UND) FN
FN+TP

× 100%
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5.3 Overall Performance Evaluation
During the evaluation phase, three key metrics are employed to assess the effectiveness of our
proposed methods. Accuracy, defined as the overall proportion of correctly classified instances,
serves as a fundamental measure of the model’s capability to accurately differentiate between be-
nign and malicious packets. This metric is critical in evaluating the overall efficacy of the detec-
tion system. The False Alarm Rate (FAR) quantifies how often BLEGuard erroneously activates
an alert when processing benign advertising packets from legitimate BLE devices, reflecting the
model’s precision. Conversely, the Un-detection Rate (UND) measures the frequency with which
BLEGuard fails to identify a spoofing attack, highlighting potential vulnerabilities in detecting
sophisticated threats.

BLEGuard’s performance evaluation is conducted on a robust and imbalanced dataset col-
lected from nine different BLE devices, such as Xiaomi sensors, Apple HomePod, and Dell speak-
ers. The devices and the corresponding evaluation results are comprehensively detailed in Table
5-5. The table presents the performance metrics for each device, including the accuracy, FAR, and
UND, thus providing a granular view of the system’s effectiveness across varied hardware configu-
rations. The empirical data from Table 5-5 reveals BLEGuard’s formidable detection capabilities,
achieving an exemplary average accuracy of 99.02%, complemented by a low false alarm rate
of 2.04% and an un-detection rate of 0.37%. These statistics not only validate the robustness of
BLEGuard but also illustrate its adaptability and reliability in diverse operational environments.

Table 5-5 Detection performance of BLEGuard mechanism.

ID Device (Number) Accuracy FAR UND
1 Xiaomi Sensor (*3) 98.92% 2.23% 0.43%
2 Xiaomi Locker (*2) 99.11% 2.04% 0.32%
3 Xiaomi Speaker (*2) 98.93% 1.84% 0.36%
4 Apple HomePod (*1) 99.04% 2.11% 0.34%
5 Dell Speaker (*1) 99.21% 2.51% 0.17%
6 Lenovo Speaker (*1) 98.71% 1.81% 0.76%
7 August Smart Lock (*2) 99.00% 2.43% 0.19%
8 Nutale Key Finder (*2) 99.05% 1.45% 0.52%
9 Nordic nRF52 DK (*2) 99.20% 1.96% 0.22%

Overall 99.02% 2.04% 0.37%

BLEGuard’s performance, with a 2.04% FAR and a 0.37% UND, indicates high reliability for
real-world BLE network monitoring. In a weeklong, intensive-use scenario, it would minimally
misidentify benign activity or miss spoofing incidents, maintaining network integrity with little
disruption. Such reliability translates into reduced maintenance demands and allows network ad-
ministrators to focus their efforts on proactive improvements rather than reactive troubleshooting.
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Chapter 6 Conclusion

In this project, we developed theBLEGuard system, a novel hybrid detectionmechanism designed
to safeguard Bluetooth Low Energy (BLE) networks against sophisticated spoofing attacks. BLE-
Guard’s unique integration of a pre-detection scheme, reconstruction techniques, and classification
models enables it to effectively identify and neutralize threats, thereby enhancing network security.
The system’s high detection accuracy, combined with a low false alarm rate and un-detection rate,
underscores its potential not only as a specialized tool for BLE security but also for broader appli-
cations in industry, healthcare, and smart home sectors. The practical application of BLEGuard in
these sectors can significantly mitigate risks associated with the inherent security vulnerabilities
of BLE technologies, providing a reliable security solution that aligns with the needs of modern
connected environments.

The construction of the BLE-SAD dataset was a cornerstone of this project, providing a crit-
ical resource for testing and refining the BLEGuard system. This large-scale dataset, generated
through comprehensive simulations of spoofing attacks within a controlled testbed environment,
offers an invaluable asset for related cybersecurity research. Its detailed representation of varied
attack scenarios enables researchers and security professionals to rigorously evaluate Bluetooth
security solutions and contributes to the ongoing development of advanced defensive methods
against an array of cyber threats.

Looking to the future, there are several avenues for further enhancing the BLEGuard system
and the BLE-SAD dataset. Enriching the dataset with a broader spectrum of attack scenarios, in-
cludingMan in the Middle (MITM) and Distributed Denial of Service (DDoS) attacks, will extend
our research’s reach and enrich the training resources available for developing robust BLE security
measures. Additionally, adapting BLEGuard to function as a general framework for Bluetooth se-
curity could transform it into a versatile tool capable of defending against a diverse range of cyber
threats. Such advancements will not only fortify the security of BLE networks but also pave the
way for next-generation protection mechanisms in the evolving landscape of digital communica-
tion technologies.
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Appendices

6.1 Appendices 1: Further Information for proposed Testbed

• BLE Devices: A variety of commercial BLE devices, such as sensors, locks, and beacons, which
represent a cross-section of typical endpoints found in BLE networks. These devices are instru-
mental in generating the benign traffic patterns for our datasets.

• User Devices: Smartphones, tablets, and computers used by end-users to interact with BLE de-
vices. These devices are equipped with BLE capabilities to emulate regular user operations and
activities within the network.

• Network Sniffers: Devices and software used to capture and analyze the traffic flowing through
the BLE network. Examples include Wireshark for packet analysis and Ubertooth for specific
BLE monitoring (Appendices 1-1).

• Attacker Platforms: These include custom-built software and modified hardware designed to
simulate various security attacks on the BLE network, such as spoofing and denial of service
(DoS) attacks. Tools in this category help test the robustness of the network’s security measures.

• Data Acquisition Systems: These systems are configured to automatically record all network
traffic, capturing essential metrics such as packet size, timing, and payload data. They are critical
for gathering the raw data needed for further analysis.

• Simulation Software: Software tools that simulate network conditions and behaviors, which
help in predicting network performance under various scenarios and in understanding potential
network failures before they occur.

Appendices 1-1: Several combinations of devices to implement the network sniffer.

Communication Platform Network Capture Tool Total Cost 
Raspberry Pi (Linux 5.4) BLE-Analyzer-PRO About $80 
Raspberry Pi (Linux 5.4) Ubertooth One About $100 

Raspberry Pi Pico (Linux 4.14) MDBT42Q-DB-32 About $22 
Google Pixel 7 (Android 13) nRF Connect Software (User device) 

Apple MacBook (macOS 13.1) nRF Connect Software (User device) 

Dell 7050 PC (Windows 10) nRF Connect Software (User device) 
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6.2 Appendices 2: Related Publication for this Project

[1] Securing Billion Bluetooth Devices leveraging Learning-based Technique[C]. The 38th An-
nual AAAI Conference on Artificial Intelligence, undergraduate consortium (AAAI 2024,
Research Proposal). First Author. Related to the Chapter 4 (4.2).

[2] Hybrid Detection Mechanism for Spoofing Attacks in Bluetooth Low Energy Networks[C].
The 22nd ACM International Conference on Mobile Systems, Applications, and Services
(MobiSys 2024, Poster). First Author. Related to the Chapter 4 (4.3).

Please note that I am the first author of the publications included in this appendix, which closely
relate to the work discussed in this report. Due to the inclusion of these paper and their overlap with
the content of this report, there may be an elevated similarity index when this document undergoes
plagiarism checks. This statement serves to declare that such similarities are expected and result
from the reuse of foundational work from my own published research, contributing directly to the
development of this project. This declaration is made to ensure transparency and to preclude any
potential concerns regarding the originality of the work presented herein.
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