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Abstract

The Internet of Everything (IoE) is a unifying framework that connects heterogeneous
networks spanning bio-nano, space, and agent systems. Within the IoE framework,
information exchange needs to operate across multiple modalities and heterogeneous
channels under constrained spectrum, energy, and latency budgets, conditions under
which traditional bit-level communication cannot meet these requirements. Semantic
communication is a promising paradigm that aligns information transmission with
task objectives by conveying task-relevant semantic representations instead of raw
data. This thesis integrates semantic communication into the IoE framework and
demonstrates its effectiveness across three domains: Internet of Bio-Nano Things
(IoBNT), Internet of Space (IoS), and Internet of Agents (IoA).

The first contribution develops a semantic-empowered molecular communication
framework for biomedical diagnostic tasks in the IoBNT. The framework employs a deep
encoder–decoder architecture to extract, quantize, and reconstruct semantic features,
and introduces a probabilistic channel network that approximates molecular propagation
dynamics to enable gradient-based optimization for semantic learning. Experimental
results show improved performance and robustness compared to conventional baselines.

The second contribution presents the first semantic communication architecture
tailored to the IoS. A three-layer architecture is designed with a data layer for multi-
modal data acquisition and feature extraction, a transport layer for semantic coding
and transmission, and an application layer for semantic interpretation and decision
making. Performance is evaluated through a representative deep-space case study on
semantic-based monitoring of Martian dust storms.

The third contribution formalizes the IoA as a semantic-aware communication
paradigm for coordination among heterogeneous large language model (LLM) agents and
identifies federated learning as the enabling substrate for distributed agent coordination.
The resilience of federated LLM agent networks is studied, including a critical analysis
of mainstream security mechanisms. A graph representation–based poisoning attack
is investigated and empirically evaluated, and the resulting insights inform a security
roadmap for future IoA research.
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Chapter 1

Introduction

1.1 Semantic Communication

According to Shannon and Weaver [53], communication could be viewed through three
hierarchical levels: (i) transmission of symbols; (ii) semantic exchange of transmitted
symbols; (iii) effects of semantic information exchange. Specifically, the first level of
communication primarily focuses on the successful transmission of symbols from the
transmitter to the receiver, where transmission accuracy is typically assessed by bit
or symbol error rates. The second level of communication deals with the semantic
information sent from the transmitter and the meaning interpreted at the receiver,
termed semantic communication. The third level concerns the effects of communication
that turn into the receiver’s ability to perform certain tasks as desired by the transmitter
[27]. Despite advances from the first through the fifth generation that have driven
practical performance toward the Shannon limit, achieving symbol-level reliability
alone does not guarantee success at the higher two levels, particularly under stringent
spectrum, energy, and latency constraints [68].

Building on recent advancements in deep learning for natural language process-
ing and for modern communication systems, recent work has developed a semantic
communication framework that operationalizes the second level of communication
[55, 66, 67, 69, 23]. The central design shift is to replace the conventional separation of
source and channel coding with an end-to-end joint source-channel coding architecture
[10]. An encoder, a differentiable channel network, and a decoder are trained jointly
so that the representation formed at the transmitter and the reconstruction produced
at the receiver are governed by the same task criterion and by the statistics of the
propagation medium [78]. Training instantiates semantic distortion through a task-
assigned loss or a latent similarity measure and evaluates this objective under stochastic
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channel impairments, thus coupling representation learning with channel conditions
and resource constraints [38]. Furthermore, the training process supports regularization
for communication budgets through rate splitting [76] and allows compatibility with
conventional modulation and error control when required [11, 70], which facilitates
integration with existing frameworks without altering the core objective.

Within the semantic communication framework, the treatment of input data is
modality dependent and follows the same principle of preserving task-relevant meaning
while suppressing redundancy. For text, the encoder maps sentences into task oriented
latent semantics and the decoder reconstructs a meaning preserving representation
suitable for downstream tasks [48]. For images, the joint source-channel coding maps
visual content into channel robust feature tensors and reconstructs a representation
that preserves semantics relevant to tasks such as classification or detection, with
training objectives grounded in task-assigned loss or perceptual consistency [42]. For
speech and audio, raw waveforms or spectrograms are embedded in content that
carries representations that retain lexical or paralinguistic cues needed for recognition
or understanding of intent while discarding channel-specific variations [64, 56]. For
video, temporal encoders summarize motion and appearance into compact trajectories
or segment level descriptors so that the decoder recovers the information required
for activity analysis rather than pixel accurate frames [30]. These modality specific
pipelines adhere to the same training protocol, namely optimizing a semantic distortion
aligned with the downstream tasks under realistic channel statistics, which yields
compact and robust representations across heterogeneous data sources.

Despite promising applications, several open questions remain. Semantic representa-
tions are inherently task dependent, and a universal metric applicable across modalities
has not yet emerged. The robustness of latent representations to distribution shifts and
adversarial perturbations is not fully understood, and existing countermeasures often
operate at the symbol level rather than at the level of meaning. Interoperability is also
an open problem, since there is no widely accepted syntax for semantic packets that
would allow heterogeneous devices to exchange task-relevant content in a consistent
manner. These challenges motivate a careful study of semantic encoders, semantic
distortion metrics, and coding strategies under diverse constraints, which in turn calls
for a unifying perspective that can be instantiated across different types of networks.
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1.2 Internet of Everything

The Internet of Everything (IoE) is a framework for interoperability across specialized
Internet-of-X (IoX) domains by enabling interaction among heterogeneous systems that
differ in carriers, scales, media, and data semantics. IoE exploits complementarities
rather than treating domains as isolated verticals and supports applications that range
from molecular processes to planetary systems [1]. Within this landscape, the Internet
of Bio-Nano Things (IoBNT) interconnects bio-nano devices that communicate through
nonconventional mechanisms such as molecular signaling in diffusive and reactive media,
with the objective of real time sensing and control of biological dynamics [36]. The
Internet of Space (IoS) extends connectivity through constellations of small satellites
and supporting ground and aerial segments to deliver global access and to manage links
with long delays and intermittent contacts [5]. Furthermore, the Internet of Agents
(IoA) provides an agent-centric infrastructure for autonomous entities driven by large
language models or vision language models to discover capabilities, orchestrate tasks,
and coordinate actions at scale [61].

Building on this foundation, the next three subsections introduce IoBNT, IoS,
and IoA as representative IoX domains within the IoE framework. Although IoBNT
and IoS operate at vastly different spatial and temporal scales, they exhibit similar
channel characteristics, including long propagation delays, intermittent connectivity,
strong interference, and stringent budgets; therefore, applying semantic communication
in both domains follows a consistent design logic. Within the IoE framework, IoA
functions as a service layer that ingests measurement data and semantic information
from physical applications across the IoE (e.g., IoBNT and IoS) to train, coordinate,
and deploy large model agents that support those environments through planning,
orchestration, and closed-loop actuation. The common methodological thread is
semantic communication: encode task-aligned meaning at the source, transport it
robustly over communication channels, and decode it into mission objectives that guide
agent policies. This perspective unifies the three domains in this thesis and provides
a coherent transition to the problem formulations and design choices developed in
subsequent chapters.

1.2.1 Internet of Bio-Nano Things (IoBNT)

The IoBNT interconnects bio–nano devices deployed within living tissues and mi-
crofluidic platforms for sensing, actuation, and closed-loop control of physiological
processes. Communication in IoBNT commonly relies on molecular mechanisms,
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including diffusion-driven propagation, ligand–receptor binding, enzymatic reaction
pathways, and microbe- or cell-mediated transport, under stringent constraints on
size and energy [2, 35]. Channel behavior exhibits long memory, stochastic arrival
times, and pronounced intersymbol interference; system design must also address
nanoscale energy harvesting, biocompatibility, and on-site processing of biosignals [33].
Representative applications include continuous intrabody health monitoring, disease
diagnosis, targeted drug delivery, and lab-on-a-chip technology [80, 11, 88, 47]. The
combination of unconventional carriers, severe resource limits, and clinical decision
needs motivates communication strategies that preserve meaningful content rather
than fidelity to raw data.

Contribution 1: This thesis proposes an end-to-end semantic learning framework
designed to optimize task-oriented molecular communication, with a focus on biomedi-
cal diagnostic tasks under resource-constrained conditions. The proposed framework
employs a deep encoder-decoder architecture to efficiently extract, quantize, and decode
semantic features, prioritizing task-relevant semantic information to enhance diagnostic
classification performance. Additionally, a probabilistic channel network is introduced
to approximate the dynamics of molecular propagation, enabling gradient-based opti-
mization for end-to-end learning. Experimental evaluations on a representative dataset
demonstrate the effectiveness of the proposed framework.

1.2.2 Internet of Space (IoS)

The IoS enables connectivity across space, aerial, and ground segments. The space
segment comprises low-earth orbit (LEO) and geostationary orbit (GEO) constellations
that include CubeSats and larger satellites with intersatellite links; the aerial segment
employs high-altitude platforms and unmanned aerial vehicles (UAVs); the ground
segment consists of gateway stations, mission operations centers, and edge data centers
orchestrated using software-defined networking and network function virtualization
[4]. Operation across these segments encounters intermittent visibility windows, long
and variable propagation delays, Doppler and blockage dynamics, stringent spectrum
and power budgets, radiation-hardened hardware constraints, and contact-plan–driven
intermittency [18, 6]. Application domains include global IoT backhaul for remote
regions, disaster response and emergency connectivity, Earth observation for agriculture
and climate, maritime and aviation monitoring, and deep-space science missions
[85, 34, 13]. These characteristics create requirements for interoperable and contact-
aware communication, for energy- and spectrum-efficient transmission, and for mission-
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centric prioritization of information, thereby motivating a task-oriented and semantics-
aligned design that will be developed next.

Contribution 2: This thesis proposes the first semantic communication archi-
tecture tailored to IoS environments. The design adopts a three-layer framework
that includes a data layer for multimodal feature extraction, a transport layer for
semantic encoding and transmission under intermittent contacts and long delays, and
an application layer for mission-level interpretation and decision making. A synergistic
ISAC with terahertz (THz) links is further introduced to align sensing fidelity with
semantic entropy demands, improving spectral efficiency and task-aware robustness
in harsh space conditions. The architecture is validated through a deep-space case
study on semantic monitoring of Martian dust storms, demonstrating gains in energy
efficiency, transmission reliability, and mission-oriented decision support.

1.2.3 Internet of Agents (IoA)

Recent advances in large language models (LLMs), such as ChatGPT, LLaMA,
DeepSeek, and Gemini, have shifted AI from single-task utilities to autonomous
agents capable of perception, reasoning, and action [62, 29]. Scaling such agents from
standalone deployments to collaborative ecosystems requires an infrastructure for ca-
pability discovery, coordinated decision making, and policy enforcement. The Internet
of Agents (IoA) aims to address this requirement by defining a new semantic-aware
communication paradigm for LLMs, in which heterogeneous agents exchange intents,
beliefs, and plans across virtual and physical environments [61]. The IoA infrastructure
provides capability discovery, coordinated decision making, and policy enforcement,
with core services for adaptive communication, dynamic task orchestration, consensus
and conflict resolution, and incentive mechanisms [86]. Federated learning serves as
the principal enabler by allowing geographically distributed agents to refine models
through gradient or parameter sharing instead of raw data, thereby preserving data
sovereignty and reducing dependence on centralized servers [7]. However, update traffic
in federated LLMs (FedLLMs) introduces attack surfaces that include model poisoning,
gradient leakage, and semantic manipulation, which exploit higher order correlations
among benign updates and often evade detectors operating at the bit or symbol level
[40, 39]. These security and privacy risks motivate an adversary-centric robustness
study of FedLLMs within the IoA setting.

Contribution 3: This thesis first formalizes the IoA architecture as an agent-centric
stack for semantic level exchanges of intents, beliefs, and plans, with federated learning
as the communication substrate that coordinates model updates among distributed
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large language model agents. Within this framework, the thesis examines the resilience
of federated large language models in wireless networks. A focused review shows
that prevailing defenses rely on distance or similarity based outlier detection and
degrade under non-independent and identically distributed (non-IID) textual data,
where adaptive adversaries craft updates that remain close to benign statistics. The
study analyzes a graph representation-based model poisoning method that exploits
higher order correlations among client gradients to evade detection. Finally, a security
roadmap for future IoA research is outlined.

1.3 Thesis Structure

Building on the foundations of semantic communication and the Internet of Everything
introduced above, the remainder of this thesis instantiates and evaluates the proposed
methodology across three representative domains. The thesis is structured as follows:

Chapter 2 develops a semantic-empowered molecular communication pipeline for
the Internet of Bio–Nano Things, including a system model for diffusion–reaction
channels, an end-to-end encoder–decoder with a probabilistic channel network, and an
experimental evaluation for biomedical diagnostics. Chapter 3 formulates requirements
for the Internet of Space, presents a three-layer semantic architecture with standardiza-
tion and interoperability considerations, and validates the design in a deep-space use
case. Chapter 4 introduces the Internet of Agents as a semantic-aware communication
paradigm for large language model agents, identifies federated learning as the enabling
substrate, and investigates adversarial robustness with a graph-representation poisoning
framework and corresponding analysis. Finally, Chapter 5 concludes this thesis.



Chapter 2

Semantic-Empowered Molecular
Communication for the IoBNT

2.1 IoBNT: Motivation and Challenges

Molecular communication (MC) has emerged as a promising paradigm for information
exchange in environments where traditional electromagnetic (EM)-based communication
systems encounter fundamental limitations. Unlike EM waves, which suffer from severe
attenuation and interference in biological and fluidic environments, MC relies on the
controlled release, propagation, and detection of molecules to encode and transmit
information [2]. This approach is particularly well-suited for applications in the
Internet of Bio-Nano Things (IoBNT), where micro- and nanoscale devices operate in
biological systems [16]. Key IoBNT applications include disease diagnosis, targeted
drug delivery, and real-time health monitoring, where MC provides a biocompatible
and energy-efficient communication mechanism [26].

Despite its potential, the practical deployment of MC in IoBNT faces significant
challenges, including low data rates, severe inter-symbol interference (ISI), and high
susceptibility to noise. These impairments substantially limit the molecular chan-
nel’s ability to support complex data transmission, which is critical for biomedical
applications such as disease diagnosis and physiological signal monitoring [65]. Given
the stochastic nature of molecular propagation, addressing these challenges requires
novel approaches to enhance communication efficiency while ensuring robustness under
dynamic and uncertain channel conditions [8].

To overcome these limitations, incorporating semantic processing into communica-
tion systems has emerged as a promising solution for optimizing resource-constrained
environments by prioritizing task-relevant information over conventional bit-level ac-
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curacy [21]. In [10], a semantic-based joint source-channel coding (JSCC) framework
was introduced to directly map source data to channel symbols, eliminating the need
for separate compression and error correction. By jointly optimizing encoding and
decoding, JSCC demonstrated enhanced robustness against noise and bandwidth con-
straints in wireless communication, ensuring graceful performance degradation under
varying channel conditions. The work in [37] extended semantic communication to the
IoBNT domain by integrating domain knowledge into the encoding process, improving
efficiency in biologically constrained environments with strict energy and resource
limitations. Furthermore, [78] investigated the integration of semantic communication
with molecular systems. This work introduced an end-to-end training approach to
enhance communication reliability under stochastic propagation effects, demonstrating
the feasibility of semantic encoding in molecular channels.

Although semantic-based methods have been explored in molecular communication,
existing approaches struggle to map task-relevant information into physically transmit-
table molecular parameters while accounting for the stochastic and non-differentiable
nature of molecular propagation. Moreover, the lack of a structured mapping between
high-level semantic information and molecular transmission parameters limits the
adaptability and transferability of current models across dynamic channel conditions
and diverse IoBNT tasks [11]. These gaps motivate an end-to-end design that cou-
ples task-aligned semantic learning with a learnable mapping to molecular control
parameters and a differentiable surrogate of the propagation process.

In this work, we propose an end-to-end semantic molecular communication frame-
work using a deep encoder-decoder architecture to extract, quantize, and decode
task-oriented semantic features. We introduce a quantization function to optimize the
semantic-to-physical mapping and enhance system transferability. To achieve channel
differentiability, we further propose a probabilistic channel network that models the
stochastic dynamics of molecular propagation. This integration facilitates end-to-end
training and dynamic adaptation to channel conditions. Unlike conventional methods
focused on bit-level transmission, our method prioritizes semantics aligned with task
objectives, demonstrating superior efficiency and robustness over traditional baselines in
diagnostic image classification tasks. Figure 2.1 specifies the target application studied
in this work: a bio–nano robot operating in the gastrointestinal tract performs lesion
assessment, extracts decision-critical semantics onboard, and conveys these semantics
over a molecular link under stringent bandwidth, energy, and reliability constraints
[14]. This scenario defines the operational requirements that drive the system design.
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Fig. 2.1 Target application scenario for semantic-empowered molecular communication
system: A bio–nano robot operates in the gastrointestinal tract to detect a suspected
lesion. Task-oriented semantic features are extracted onboard, compressed, and trans-
mitted over a molecular link under severe bandwidth, energy, and ISI constraints; the
receiver reconstructs semantics for diagnostic decision support [14].

Tx

Rx

Flow Velocity

Signal Molecule

Diffusion Motion

Fig. 2.2 3D molecular propagation channel with a constant uniform flow velocity.

2.2 Molecular Communication System Model

In this work, we consider a single-input-single-output (SISO) molecular communication
system operating in an unbounded, three-dimensional environment with a constant
uniform flow velocity, as shown in the Fig. 2.2. The transmitter (Tx) and receiver
(Rx) are assumed to be synchronized, ensuring precise alignment during each symbol
transmission [52]. The Tx encodes information by instantaneously releasing identical
molecules at the beginning of each symbol slot with duration ts. All molecules are
assumed to share identical physical properties, such as size and diffusivity, and are not
subject to collisions or chemical reactions. Consequently, their motion is determined
by a combination of random Brownian diffusion and a uniform drift at velocity v.
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2.2.1 Semantic Coding Design

The semantic coding design of the molecular communication system is structured to
accommodate a wide range of input data types, provided they align with the semantic
objectives of the system. The input data, denoted as χ, can represent diverse forms of
information, such as medical images, environmental sensory data, or encoded signals,
depending on the specific application context. In this work, χ represents images,
including medical images used for diagnostic image classification tasks in the IoBNT.
Mathematically, χ ∈ RH×W×C , where H, W , and C denote the height, width, and
number of channels of the image, respectively. These images serve as the initial input to
the transmitter, which extracts semantic features essential for downstream tasks, such
as classification or detection. The transmitter utilizes an encoder to transform χ into
a lower-dimensional representation of semantic features F . These features capture the
essential information required for the communication task while eliminating redundant
data. The transformation is mathematically expressed as:

F = fθ(χ), (2.1)

where fθ(·) denotes the encoding function parameterized by θ. This function transforms
the input data χ into a lower-dimensional semantic feature representation F , capturing
task-relevant information while eliminating redundancies. This encoding step is critical
for optimizing the limited bandwidth of the molecular communication system. The
detailed design and implementation of fθ(·) will be discussed in subsequent sections.
To enable molecular transmission, the semantic features F are further mapped to a
normalized vector of channel input symbols W ∈ [0, 1]k using a quantization function
Quantize(·). This process is defined as:

W = Quantize(F) = Qβ(F), (2.2)

where W = [W1,W2, . . . ,Wk], and each element Wi ∈ [0, 1] represents the normalized
proportion of molecules to be released in the corresponding time slot. Specifically,
the actual number of molecules released by the transmitter is determined by Wi · nm,
where nm is the maximum molecular release capacity. This design ensures that the
semantic features F are efficiently encoded into a compact, continuous representation,
compatible with molecular communication constraints. The quantization process
employs non-linear transformations and probabilistic decisions to generate the vector
W . This approach facilitates the end-to-end optimization of the communication
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system by allowing the encoder and decoder to jointly adapt to the molecular channel
characteristics. Further details on the mathematical formulation and implementation
of Qβ(F) will be elaborated in later sections.

2.2.2 Molecular Propagation Model

The molecular communication (MC) system under consideration features a point
transmitter (Tx) at dTx = [0, 0, 0] and a spherical receiver (Rx) centered at dRx =
[R, 0, 0]. The position of an information molecule at time t is denoted by d(t) =
[xt, yt, zt], and a uniform drift velocity v = [v, 0, 0] acts along the x-axis. At the Tx’s
location dTx and time t, the molecular concentration is expressed as:

Φ(dTx, t) =
k∑
i=1

ΦTx,i
(
dTx, t

)
, (2.3)

where ΦTx,i(dTx, t) represents the contribution to the concentration for the i-th bit
of the normalized vector of channel input symbols W , which is expressed as:

ΦTx,i(dTx, t) = Winm δ
(
t− ti

)
, (2.4)

where Wi ∈ [0, 1] is the normalized release factor for the i-th time slot, nm is the
maximum number of molecules released per time slot, ti = (i− 1) ts is the release time
for the i-th bit, and δ(·) is the Dirac delta function modeling instantaneous molecular
release. Once emitted, the molecules propagate through the medium via a combination
of random Brownian diffusion and directed drift. This process is governed by the
advection–diffusion equation [26]:

∂Φ(d, t)
∂t

= D∇2Φ(d, t)−∇
(
vΦ(d, t)

)
, (2.5)

where Φ(d, t) is the molecular concentration at position d and time t, Dc is the
diffusion coefficient, ∇2 denotes the Laplace operator, and ∇ is the gradient operator
in Cartesian coordinates. The first term on the right-hand side captures molecular
diffusion, while the second term describes the effect of the uniform drift velocity v.

To fully characterize the molecular propagation, initial and boundary conditions
are imposed [87]. At t = 0, all molecules are assumed to be concentrated at dTx,
represented by the spatial Dirac delta Φ(d, 0) = δ

(
d− dTx

)
. The boundary condition

assumes an unbounded environment, such that lim∥d∥→∞ Φ
(
d, t

)
= 0 for all t > 0.

Solving the advection-diffusion equation under these conditions yields the probability
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density function (PDF) for finding a single molecule at position d and time t:

f(d, t) = 1(
4πDc t

)3/2 exp
(
− ∥d − v t − dTx∥2

4Dc t

)
. (2.6)

This PDF describes the spatiotemporal distribution of molecules as they propagate
through the medium under the combined effects of diffusion and drift. Intuitively, the
PDF indicates that molecules are more likely to be found near the transmitter at earlier
times, while increased diffusion and drift broaden the distribution as time progresses,
reducing the likelihood of capture at distant locations. To evaluate the likelihood of
molecular capture at the receiver, the PDF is integrated over the spherical volume
of the receiver, denoted as Vr = 4πr3

3 . Under the Uniform Concentration Assumption
(UCA) [46], which applies when the receiver is sufficiently far from the transmitter, the
molecular concentration is approximately uniform within the receiver’s volume. Using
this assumption, the probability of capturing a molecule at the receiver simplifies to:

P (t) = Vr(
4πDc t

)3/2 exp
(
−

(
R− v t

)2

4Dc t

)
, (2.7)

where R represents the distance between the transmitter and receiver, v is the uniform
drift velocity, and t is the time elapsed since molecular release. Since each signal
molecule is transmitted independently, the number of molecules observed by the
receiver, denoted as N , follows a binomial distribution. Specifically, for nm molecules
released by the transmitter, the distribution is given by:

N(nm, t) ∼ B
(
nm, P (t)

)
, (2.8)

where B(·) denotes the binomial distribution, and P (t) is the probability of capturing
a single molecule at the receiver, as derived previously. When nm is sufficiently large,
the binomial distribution can be approximated by a Gaussian distribution [78]:

N(nm, t) ∼ N
(
nmP (t), nmP (t)

(
1− P (t)

))
, (2.9)

where N (·) denotes the Gaussian distribution, with mean nmP (t) and variance
nmP (t)(1 − P (t)). During the communication process, molecules released in prior
time slots may arrive at the receiver due to the uncertainty introduced by molecular
diffusion. This effect, known as ISI, is typically negligible when the drift velocity
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significantly dominates the Brownian diffusion. However, when diffusion becomes
the predominant propagation mode, ISI can degrade the system’s communication
performance significantly. Additionally, the molecular communication channel may
introduce Gaussian noise due to molecular decomposition or emissions from other
nano-machines. This noise is modeled as Nnoise ∼ N (0, σ2

n). Considering both ISI and
noise, the total number of molecules observed by the receiver at the j-th time slot can
be expressed as:

Nobs(j, t) = WjN(nm, t) +
λ∑
i=1

W(j−i)N(nm, t+ its) +Nnoise, (2.10)

where Wj is the transmitted bit at the j-th time slot, and λ represents the length of
the channel memory, capturing contributions from previous time slots. For simplicity,
in this work, we consider λ = 1, accounting for ISI caused by molecules released in the
immediately preceding time slot.

2.2.3 Signal-to-Interference Ratio Analysis

The signal-to-interference ratio (SIR) is a critical metric for assessing the performance
of molecular communication systems, particularly in scenarios affected by ISI. ISI arises
from the delayed arrival of molecules released in previous symbol slots, which interfere
with the current transmission. In the proposed semantic coding scheme, the SIR is
defined as:

SIR = WjN(nm, t)∑λ
i=1 W(j−i)N(nm, t+ its) +Nnoise

, (2.11)

where Wj and W(j−i) represent the transmitted bits at the current and previous time
slots, respectively. N(nm, t) denotes the expected number of molecules observed at the
receiver at time t, and Nnoise represents Gaussian noise introduced during molecular
propagation. A higher SIR indicates better MC performance, as the desired signal
dominates residual ISI and noise. Two key physical factors, the transmitter–receiver
distance d and the flow velocity v, strongly influence the SIR: increasing d reduces
the observed concentration at the receiver due to greater diffusion and attenuation
over longer paths, while decreasing v increases temporal dispersion (longer residence
times), thereby strengthening the ISI tail and allowing molecules from prior symbols
to interfere more with the current observation.
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Fig. 2.3 End-to-end semantic molecular communication framework and training work-
flow. (1) Input data enter the encoder, which extracts task-relevant semantics and
performs probabilistic quantization to produce a molecular signal. (2) The molecular
signal passes through the molecular channel, whose stochastic input–output behavior
is emulated by a learnable channel network. (3) The channel network is trained using
a channel loss that compares its predictions with the quantized supervision. (4) The
decoder maps the received signal to the task output, and the encoder and decoder are
jointly optimized with a cross-entropy loss, while the channel network remains in the
loop. (5) The trained encoder, decoder, and channel models are integrated back into
the system for deployment in communication tasks.

2.3 Semantic Learning Framework

In this section, we introduce the proposed end-to-end semantic molecular communica-
tion framework, which is specifically designed to address diagnostic image classification
tasks in the IoBNT. The framework aims to determine task-specific outputs, such as
disease severity or diagnostic labels, based on molecularly transmitted information. As
illustrated in Fig. 2.3, the proposed framework integrates semantic feature extraction,
molecular communication channel modeling, and semantic decoding into a unified
system. By employing deep neural networks, the framework efficiently encodes and
transmits task-relevant information while mitigating the effects of channel noise, ISI,
and stochastic distortions inherent to molecular communication. This design enables
robust task execution even in challenging communication environments, ensuring high
reliability and accuracy for IoBNT applications.
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2.3.1 Encoder and Decoder Architecture

The proposed framework integrates semantic feature extraction, quantization, and
decoding to enable robust end-to-end learning in molecular communication systems.
This section provides a detailed explanation of the key components of the system,
explaining the functions of the encoder and decoder.

Semantic Feature Extraction

The encoder, parameterized by fθ, transforms the input medical image χ into a
lower-dimensional semantic representation F ∈ Rk through the mapping F = fθ(χ).
Here, fθ(·) represents a convolutional neural network (CNN) augmented with a final
linear transformation layer. This design extracts task-oriented semantic features while
minimizing redundancy, providing a continuous, unnormalized representation F suitable
for subsequent processing. The semantic features F encapsulate high-level abstractions
of the input image χ, such as diagnostically significant patterns or regions indicative of
disease severity.

The encoder consists of five convolutional layers, each followed by batch normaliza-
tion to stabilize training and LeakyReLU activation functions to introduce non-linearity.
This hierarchical design progressively reduces the spatial dimensions of the input image
while increasing the abstraction level of the extracted features. The output F from
the encoder serves as a compact, high-dimensional semantic representation, which
is further processed by the quantization module Qβ(F) to generate the normalized
molecular transmission parameters W ∈ [0, 1]k.

Probabilistic Quantization

To transform the semantic features F into a normalized vector of channel input
symbols W ∈ [0, 1]k, the quantization function W = Qβ(F) is employed as a critical
intermediate step, where Qβ(·) is implemented as a fully connected neural network
parameterized by Qβ. This function maps each component Fi of the semantic feature
vector to a corresponding element Wi ∈ [0, 1] in the normalized output vector W . This
design ensures that the semantic features are translated into a physically interpretable
molecular communication parameter, enabling seamless integration with the channel.

The distinction between F and W underscores the necessity of the quantization
step. While F captures high-level, abstract semantic features relevant to the diagnostic
task, these features are not directly compatible with the constraints of molecular
communication. As a normalized vector of channel input symbols, W aligns the
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semantic representation with the physical requirements of the communication system.
This transformation is crucial for facilitating end-to-end optimization while maintaining
interpretability and compliance with molecular constraints. By incorporating Qβ(F),
the system ensures robust gradient flow during training and effective adaptation of the
semantic features to the molecular communication, achieving both task relevance and
transmission efficiency.

Task-Specific Decoding

The decoder, parameterized by gψ, directly maps the received channel output symbols
WRx to the task-specific output y, which represents the predicted probability distribu-
tion over eight classes in image classification tasks. This decoding process is formulated
as:

y = gψ(WRx), (2.12)

where gψ(·) is implemented as a series of fully connected layers designed to process the
normalized molecular transmission parameters WRx into the semantic output y. The
final layer employs a Softmax activation function to produce a probability distribution
over the task-specific output space. To ensure the framework is optimized for the
classification task, the cross-entropy loss function is employed:

LCE = −
k∑
i=1

zi log (yi) , (2.13)

where zi and yi are the one-hot encoded ground truth and the predicted probabilities,
respectively. The end-to-end optimization of the framework minimizes this loss function:

(θ∗, β∗, ψ∗) = arg min
θ,β,ψ
LCE. (2.14)

The encoder and decoder architecture, as shown in Table 2.1, is meticulously de-
signed to achieve efficient and robust task-specific coding and decoding in the proposed
framework. Each layer is defined by its type, activation function, and other hyperparam-
eters, all of which are carefully optimized to ensure superior performance. Furthermore,
the parameter cout, representing the number of filters in the final convolutional layer
of the encoder function fθ(χ), allows the framework to flexibly balance bandwidth
constraints with task-specific accuracy. This adaptability ensures that the architecture
can cater to diverse molecular communication scenarios, maintaining high semantic
fidelity while adhering to the physical limitations of the channel. The design not only
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Table 2.1 Architectures of the Encoder and Decoder Networks

Function Layer Type Out/Kernel Stride/Pad Activation / Post

fθ(χ)

Conv1 Conv2D 32 × 9×9 2/4 BN + LeakyReLU (α=0.1)

Conv2 Conv2D 64 × 5×5 2/2 BN + SE + LeakyReLU

Conv3 Conv2D 128 × 3×3 2/1 BN + SE + LeakyReLU

Conv4 Conv2D 128 × 3×3 1/1 BN + LeakyReLU

Conv5 Conv2D cout=128 × 3×3 1/1 Linear

GAP GlobalAvgPool2D cout=128 × − −/− Output F ∈ R128

Qβ(F)
FC1 Fully Connected 128 × − −/− ReLU

FC2 Fully Connected 128 × − −/− ReLU

Output Fully Connected k=64 × − −/− Sigmoid ([0, 1])

gψ(WRx)
FC1 Fully Connected 128 × − −/− BN + ReLU

FC2 Fully Connected 64 × − −/− Dropout (p=0.5) + ReLU

Output Fully Connected Nclass=8 × − −/− Softmax

facilitates effective processing of received data but also enhances the relevance and
reliability of the output for downstream tasks.

2.3.2 Channel Network

The channel network is a vital component of the communication framework, serving as
a probabilistic model to capture the stochastic behavior of molecular communication
channels. These channels are inherently random due to phenomena such as noise,
molecular diffusion, and ISI, all of which can significantly distort the transmitted
channel symbols W . By modeling the conditional probability distribution of the
received symbols WRx, the channel network effectively addresses these challenges and
enables robust end-to-end optimization.

In molecular communication, the number of transmitted molecules directly influ-
ences the received signals at the receiver, which typically follow a binomial distribution.
This distribution can be approximated by a Gaussian distribution when the number
of transmitted molecules is sufficiently large, enabling computationally efficient mod-
eling [2]. To capture the stochastic transformations introduced by the channel, the
channel network models the conditional distribution of WRx as a mixture of Gaussian
distributions:

p(WRx|W ) =
h∑
i=1

πi(W )φi(WRx|W ), (2.15)
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Table 2.2 Architecture of the Channel Network

Layer Type Output Dim. Activation

Input Layer Fully Connected hhidden = 20 LeakyReLU

Feature Extraction Fully Connected hhidden = 20 LeakyReLU

Mean Output (µ) Fully Connected h = 2 Linear

Variance Output (σ2) Fully Connected h = 2 ReLU

Mixing Coeff. (π) Fully Connected h = 2 Softmax

where h = 2 represents the number of Gaussian components, πi are the mixing
coefficients that satisfy ∑h

i=1 πi(W ) = 1, and φi(WRx) denotes the i-th Gaussian kernel:

φi(WRx|W ) = 1√
2π σ2

i (W )
exp −∥(WRx − µi(W )∥2

2σ2
i (W ) , (2.16)

with µi and σ2
i representing the mean and variance of the i-th Gaussian component,

respectively. The channel network is implemented with multiple fully connected
layers designed to estimate the parameters of the Gaussian mixture model, including
the means (µi), variances (σ2

i ), and mixing coefficients (πi). The mixture captures
multi-modality induced by random propagation and interference: means µi shift
with expected reception levels, variances σ2

i widen under stronger uncertainty, and
the weights πi adaptively trade between these regimes as channel conditions vary.
These learned parameters define the conditional distribution p(WRx|W ), facilitating
accurate modeling of the stochastic channel effects and enabling robust decoding of
the transmitted symbols.

To address ISI, the channel network processes input symbols corresponding to
molecules emitted in different time slots. A sliding input mechanism dynamically
adjusts features associated with earlier emissions to account for their delayed impact on
the current time slot. This design effectively mitigates ISI by incorporating historical
molecular contributions into the modeled distribution. The detailed architecture of the
channel network is outlined in Table 2.2, where each fully connected layer captures the
non-linear relationships between transmitted and received channel symbols, providing
an accurate representation of molecular channel dynamics.

2.3.3 Network Training

The training of the proposed communication framework is divided into two stages:
channel network pre-training and joint optimization of the encoder and decoder. This
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two-stage process ensures that the channel model accurately captures the stochastic
dynamics of molecular communication, enabling effective end-to-end optimization.

Pre-training the Channel Network

The channel network is trained separately using randomly generated channel symbols
vectors W and their corresponding received vectors WRx, simulated based on the
molecular propagation channel described in Section 2.2.2. The data are generated using
Smoldyn, a particle-based molecular communication simulation software, to mimic the
behavior of the molecular propagation system. This simulation captures the effects of
noise, diffusion, and ISI, providing realistic training data for the channel model. The
channel network learns the conditional probability p(WRx|W ), modeled as a Gaussian
mixture distribution, by minimizing the negative log-likelihood loss:

LCN = −1
k

k∑
j=1

log
(

h∑
i=1

πi(Wj)φi(WRxj

∣∣∣Wj)
)

(2.17)

where Wj and WRxj denote the transmitted and received channel symbols at the j-th
instance, respectively. The terms πi and φi represent the mixing coefficients and
Gaussian kernel functions, parameterized by the channel network, defined as:

φi(WRxj

∣∣∣Wj) = 1√
2πσ2

i

exp
(
−(WRxj − µi)2

2σ2
i

)
(2.18)

where µi and σ2
i are the mean and variance of the i-th Gaussian component, and πi(Wj)

are the mixing coefficients that satisfy ∑h
i=1 πi(Wj) = 1. The training algorithm used

to optimize the parameters πi, µi, and σ2
i is outlined in Algorithm 1. This iterative

optimization process updates the parameters using gradient descent until convergence.
Upon completion of pre-training, the channel network’s parameters are fixed, and the
network is treated as a fixed component during the subsequent training of the encoder
and decoder. This ensures that the encoder and decoder can adapt their parameters to
optimize task performance based on the fixed approximation of the molecular channel.
By leveraging pre-trained channel network parameters, the system achieves robust
modeling of molecular signal propagation under stochastic channel conditions.

Joint Training of the Encoder and Decoder

Once the channel network is pre-trained, the encoder fθ(·), Qβ(·) and decoder gψ(·) are
jointly optimized in an end-to-end manner to minimize the task-specific loss function.
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Algorithm 1 Pre-training Algorithm for Channel Network
Input: A set of transmitted channel symbols W and corresponding received channel
symbols WRx; Learning rate ξ; Maximum iterations N .

1: Initialization: Randomly initialize the channel network parameters
{π(0)

i , µ
(0)
i , σ

2(0)
i }. Set iteration counter i = 0.

2: while the convergence criterion is not met and i < N do
3: Compute the Gaussian kernel values φi(WRxj

∣∣∣Wj) for all j and i.
4: Compute the conditional probability distribution p(WRx|W ) as a mixture of

Gaussian components.
5: Compute the negative log-likelihood loss LCN.
6: Update the network parameters via gradient descent:

π
(i+1)
i ← π

(i)
i − ξ · ∇π

(i)
i
LCN, (2.19)

µ
(i+1)
i ← µ

(i)
i − ξ · ∇µ

(i)
i
LCN, (2.20)

σ
2 (i+1)
i ← σ

2 (i)
i − ξ · ∇

σ
2(i)
i
LCN. (2.21)

7: Increment the iteration counter: i← i+ 1.
8: end while
9: Output: Trained network parameters {πi, µi, σ2

i }hi=1.

For batch-based training, the loss function in Equation 2.13 is extended to account for
multiple samples and classes. The predicted probabilities yi are computed using the
Softmax function, ensuring valid probability distributions over the class labels.

The training procedure is detailed in Algorithm 2. The process begins with
the initialization of the encoder and decoder parameters θ(0), β(0) and ψ(0), while
the channel network parameters are fixed after pre-training. At each iteration, the
encoder extracts semantic features F from the input χ, which are quantized into symbol
representations W via the probabilistic quantization module Q(F). These symbols W
are transmitted through the molecular communication channel, resulting in the received
symbols WRx. Instead of reconstructing intermediate semantic features, the decoder
directly maps WRx to task-specific outputs y, streamlining the decoding process and
reducing computational complexity. The cross-entropy loss LCE is computed and used
to update the parameters of both the encoder and decoder through gradient descent.

This joint optimization approach allows the encoder to effectively extract semantic
features that are robust to the stochastic effects introduced by the molecular channel,
while enabling the decoder to output task-specific outputs. By incorporating the
channel network as a fixed component during training, the end-to-end system achieves
optimal performance under the constraints of molecular communication environment.
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Algorithm 2 Training Algorithm for Encoder and Decoder
Input: A batch of input data χ, ground truth labels Z; initialized encoder and
decoder parameters θ(0), β(0), ψ(0); fixed channel network parameters (after pre-training);
learning rate ξ′, and maximum iterations N .

1: Initialization: Set iteration counter i = 0.
2: while the convergence criterion is not met and i < N do
3: Extract semantic features: F ← fθ(i)(χ).
4: Quantize semantic features: W ← Qβ(i)(F).
5: Transmit the channel symbols W through the channel and obtain the received

symbols WRx.
6: Decode task-specific outputs: y ← gψ(i)(WRx).
7: Compute the cross-entropy loss LCE.
8: Update network parameters via gradient descent:

θ(i+1) ← θ(i) − ξ∇θ(i)LCE, (2.22)
β(i+1) ← β(i) − ξ∇β(i)LCE, (2.23)
ψ(i+1) ← ψ(i) − ξ∇ψ(i)LCE. (2.24)

9: Increment iteration counter: i← i+ 1.
10: end while
11: Output: Trained encoder fθ(·), Qβ(·) and decoder gψ(·).

Optimization and Stopping Criteria

The entire training framework is optimized using the Adam optimizer, which is well-
suited for handling the stochastic nature of the training process. The learning rate and
other hyperparameters, such as the beta values for moment estimation, are carefully
tuned through empirical evaluation to achieve stable convergence. During training, the
objective is to minimize the task-specific loss function, ensuring that the encoder learns
to extract robust and discriminative semantic features, while the decoder accurately
maps the received symbols WRx to the final task-specific output y. The training process
continues until one of the following stopping criteria is met.

1. Convergence of Loss: The loss function LCE shows negligible changes across
consecutive epochs, indicating that the model parameters have stabilized.

2. Maximum Epochs: A pre-defined number of epochs is reached, ensuring that
the training process does not overfit the model to the simulated data.

This two-stage training strategy effectively decouples the pre-training of the channel
network from the joint optimization of the encoder and decoder. By leveraging
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Table 2.3 Parameters of the Molecular Propagation Channel for Different Scenarios

Parameter Scenario 1 Scenario 2

Propagation distance (R) 100µm 60 cm

Receiver radius (r) 20µm 20µm

Diffusion coefficient (Dc) 800µm2/s 800µm2/s

Flow velocity (v) 50µm/s 40 cm/s

Symbol duration (ts) 4 s 3 s

Initial molecule number (N) 2 × 104 2 × 104

simulated data generated with Smoldyn, the proposed communication framework
achieves a careful balance between accurately modeling the stochastic dynamics of
the molecular channel and optimizing the task-specific objective. This ensures robust
semantic communication, even in the presence of molecular channel uncertainties
such as noise, diffusion, and ISI, making the framework both efficient and reliable for
practical molecular systems.

2.4 Experiment and Evaluation

This section evaluates the performance of the proposed framework within the context
of molecular communication for biomedical diagnostics, leveraging the Kvasir Dataset
[54], which consists of endoscopic images of the gastrointestinal (GI) tract as shown in
Fig. 2.1. Two distinct communication scenarios are designed to reflect practical IoBNT
applications. The first scenario simulates short-range in-body molecular communication,
representative of endoscopic procedures or microfluidic systems, where communication
distances are minimal, and flow velocities are low [9]. The second scenario models
long-range communication in structured experimental platforms, such as lab-on-a-
chip systems, with increased distances and flow velocities [57, 3]. These scenarios
provide a comprehensive assessment of the framework’s robustness and efficiency under
diverse molecular channel conditions, including noise, diffusion, and ISI, highlighting
its potential to advance IoBNT-based diagnostics.

2.4.1 Experimental Setup

Communication Scenarios

To emulate diverse biomedical and engineered molecular communication contexts, two
distinct scenarios are defined for the experiments. The parameters of the molecular
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channel simulation, summarized in Table 2.3, are carefully selected to reflect realistic
dynamics, including noise, ISI, and varying flow conditions:

• Scenario 1: Short-range in-body communication. This scenario models
molecular communication in confined biological environments, such as endoscopic
procedures, vascular networks, or intercellular signaling systems [73, 19]. The
propagation distance is set to R = 100µm, consistent with realistic short-range
signaling distances within the human body. The flow velocity is set to v = 50µm/s,
reflecting slow but measurable fluidic motion, as observed in capillary blood flow
or lymphatic fluid. Noise and ISI effects are prominent due to the close-range
molecular diffusion and limited clearance rates.

• Scenario 2: Long-range communication in structured environments.
This scenario simulates molecular communication in engineered systems, such
as organ-on-chip or microfluidic platforms [3], where controlled setups enable
long-range signaling. The propagation distance is defined as R = 60 cm, represent-
ing a balance between practical setup constraints and extended communication
distances. The flow velocity is set to v = 40 cm/s, reflecting moderate fluid dy-
namics typical of structured environments. This configuration captures enhanced
molecular clearance, reducing ISI but introducing challenges such as reduced
signal concentration.

Dataset and Preprocessing

The Kvasir Dataset, a collection of GI tract endoscopic images, is used to validate
the proposed framework. This dataset comprises 8,000 high-resolution RGB images
annotated by experienced medical professionals across eight (Nclass = 8) clinically
significant categories, including normal findings and pathological conditions such as
polyps, ulcers, and bleeding. Each image is resized from its original resolution to
128 × 128 pixels, retaining the RGB channels (C = 3) to preserve crucial color and
visual cues essential for accurate gastrointestinal pathology detection. The pixel values
are normalized to the range [0, 1], ensuring consistency in input representation. The
preprocessed images (χ ∈ R128×128×3) are subsequently fed into the semantic encoder,
which extracts task-relevant features to optimize the classification task. The dataset is
split into training and testing sets using an 80:20 ratio, ensuring robust evaluation of
the framework’s performance across all categories.
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(a) Scenario 1 (b) Scenario 2

Fig. 2.4 Temporal variations of SIR during the transmission of a continuous sequence
of five ‘1’ symbol bits in two molecular communication scenarios.

Implementation Details

The framework is implemented in PyTorch and trained on a NVIDIA GeForce RTX
4060-Ti GPU. The Adam optimizer is employed with a learning rate of ξ = 0.001, a
batch size of 32, and a maximum of 50 epochs. To ensure stability during training, the
outputs of the channel network are normalized to the range [0, 1]. Each experiment
is conducted three times with different random seeds, and the averaged results are
reported to ensure statistical reliability and reproducibility. We also adopt early
stopping based on validation loss to prevent overfitting and refine convergence.

2.4.2 System Validation

To validate the proposed molecular communication system, we conducted experiments
focusing on the SIR during the transmission of five consecutive ’1’ bits. This experi-
mental design was chosen to evaluate the system’s ability to handle ISI and maintain
reliable communication under realistic channel conditions. The temporal variations of
the SIR are presented in Fig. 2.4 for two distinct communication scenarios characterized
by different flow velocities.

In Scenario 1, the propagation of information molecules leads to significant ISI, as
evidenced by the lower SIR values shown in Fig. 2.4(a). The accumulated ISI reduces
the maximum SIR in subsequent time slots, with the second time slot experiencing an
approximate 50% reduction in SIR compared to the first. This degradation highlights
the challenges posed by slower molecular clearance in low-velocity environments. In
contrast, Scenario 2 demonstrates a substantial reduction in ISI, as the faster flow
velocity enables quicker molecular clearance. As shown in Fig. 2.4(b), this results in
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Fig. 2.5 Training and testing loss of the proposed channel network in two molecular
communication scenarios.

significantly higher SIR values across all time slots. The comparison between these
scenarios underscores the critical role of flow dynamics in mitigating ISI and enhancing
the reliability of molecular communication channels.

Subsequently, the channel network was trained using randomly generated symbol
vectors of length 100 with a batch size of 20. The training process aimed to minimize
the negative log-likelihood loss. The convergence of the training loss, plotted against
the number of training iterations, is depicted in Fig. 2.5. The steady decline in loss
values demonstrates the network’s ability to accurately approximate the conditional
probability distribution of received molecular concentrations. As suggested in related
work, the final converged value of the loss aligns with the entropy of the normalized
received symbol vectors. This result validates the channel network’s capacity to model
the stochastic behaviors of molecular propagation, including noise and ISI effects.

To further evaluate the channel dynamics, a comparison between the analytical
model and simulation results was conducted under two scenarios with normalized
transmitting molecular concentrations. The results are illustrated in Fig. 2.6, offering
insights into the system’s behavior under distinct flow conditions:

In Scenario 1, which is characterized by low flow velocity, the analytical model
successfully captures the significant fluctuations and non-linear growth patterns caused
by high ISI. As shown in Fig. 2.6(a), the simulation results exhibit larger error ranges,
particularly in the low concentration region, reflecting the system’s susceptibility to
ISI and noise under diffusion-dominated propagation. This behavior highlights the
challenges posed by the slower molecular clearance and the prominent role of diffusion
in such environments.
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Fig. 2.6 Comparison of the normalized received molecular concentration between the
analytical model and simulation model in two molecular communication scenarios.

In Scenario 2, with high flow velocity, the system demonstrates improved stability
due to the reduced ISI. Fig. 2.6(b) shows that the error ranges are narrower, and the
agreement between the analytical model and simulation is closer, especially in the
mid-to-high concentration range. Nevertheless, minor deviations are observed in the
low concentration region, which can be attributed to the residual effects of noise and
stochastic molecular dynamics. These results emphasize the importance of flow velocity
in mitigating ISI and improving the overall reliability of molecular communication
systems.

2.4.3 Performance Evaluation

To evaluate the proposed semantic molecular communication framework, an image
classification task was configured in which semantic features were extracted, encoded,
transmitted, and decoded to fulfill task objectives. As a bit-oriented baseline, a
conventional source–channel pipeline was adopted: input images were first compressed
using the JPEG algorithm [24] to remove redundant visual information, followed by
channel coding with low-density parity-check (LDPC) codes [44] for error protection.
Binary concentration shift keying (BCSK) was used for molecular modulation, and
a minimum mean square error (MMSE) equalizer mitigated ISI. At the receiver,
classification was performed by a CNN comprising four 3× 3 convolutional layers with
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Fig. 2.7 Accuracy performance comparison between the proposed method and conven-
tional benchmark methods in two molecular communication scenarios.

ReLU activations and two fully connected layers, with the parameter budget matched
to that of the proposed framework.

Fig. 2.7 compares diagnostic classification performance under varying parameter
settings for the proposed semantic framework and the conventional JPEG with LDPC
baseline [74]. The bandwidth compression ratio (BCR) denotes the ratio of compressed
feature size to the original input size, quantifying pre-transmission data reduction. The
results indicate higher classification accuracy for the proposed method, with at least a
25% gain under resource-constrained conditions where the number of released molecules
per symbol nm is below 12,000. Networks trained at lower nm values exhibit improved
learning efficiency: stronger ISI and channel impairments drive the encoder–decoder to
capture more robust propagation features, thereby alleviating the cliff effect observed
at low molecule release levels.

2.5 Summary

This chapter proposed an end-to-end semantic molecular communication framework
tailored for IoBNT, addressing the challenges of noise, diffusion, and ISI in molecular
propagation channels. By introducing a probabilistic channel network, the framework
enables joint optimization of the encoder and decoder, ensuring seamless adaptation to
stochastic channel conditions. Extensive experiments on diagnostic image classification
tasks demonstrated that the proposed framework significantly outperforms traditional
methods in both accuracy and robustness. Future research will extend the framework
to MIMO scenarios, explore adaptive semantic extraction techniques, and enhance
efficiency for real-world IoBNT deployments.





Chapter 3

Semantic Communication for the
Internet of Space

3.1 IoS: Requirements and Challenges

Sixth-generation (6G) wireless networks promise to extend connectivity beyond tradi-
tional terrestrial boundaries, giving rise to the Internet of Space (IoS), an integrated
communication fabric seamlessly interconnecting satellites, spacecraft, airborne plat-
forms, and terrestrial infrastructures. IoS is envisioned to support a diverse range of
mission-critical applications, including global broadband connectivity, Earth observa-
tion, real-time environmental monitoring, and autonomous space exploration, each
demanding stringent performance metrics such as ultra-low latency, ultra-high reliabil-
ity, and massive device connectivity [31]. However, conventional terrestrial-oriented
communication frameworks encounter significant limitations in addressing the unique
challenges posed by space environments, such as intermittent connectivity due to orbital
dynamics, severe bandwidth and energy constraints, prolonged propagation delays in
interplanetary links, and the inherent complexity of multi-modal data types [45].

Recently, semantic communication has emerged as a transformative paradigm,
fundamentally shifting the communication emphasis from transmitting raw bits to
conveying meaningful, task-oriented information. By intelligently identifying, encoding,
and transmitting only the most relevant semantic content, this approach significantly
reduces redundant information and enhances resource efficiency, making it particularly
attractive for resource-constrained space missions [51]. Recent studies have demon-
strated the potential of semantic encoding techniques, particularly those leveraging deep
learning, to substantially improve spectrum utilization and reliability, achieving superior
task performance with substantially reduced data transmission requirements [81, 60].
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While initial efforts to incorporate semantic communication principles into IoS show
promise, critical research gaps remain unaddressed. Existing studies predominantly fo-
cus on terrestrial and near-Earth scenarios, lacking dedicated semantic communication
frameworks tailored explicitly for deep space or interplanetary environments character-
ized by extreme propagation delays, high error rates, and intermittent links [75, 71].
Moreover, current approaches largely neglect comprehensive considerations of standard-
ized semantic interoperability across heterogeneous IoS platforms and fail to adequately
address multi-modal semantic data fusion from diverse sources such as hyperspectral
imaging, telemetry, and sensor time-series data [63]. Although recent research highlights
the potential of integrated sensing and communication (ISAC) to acquire multi-modal
data through joint waveform design and unify perception-communication function-
alities [17], a systematic integration of ISAC with semantic-driven IoS frameworks
remains largely unexplored.

To bridge these critical gaps, this work introduces a semantic communication archi-
tecture explicitly designed for the 6G IoS. Unlike existing terrestrial-focused semantic
frameworks, our approach systematically addresses the unique constraints of space en-
vironments, including intermittent connectivity, significant propagation delays, limited
bandwidth, and strict onboard resource limitations. By emphasizing onboard semantic
extraction, encoding, and adaptive transmission of mission-specific information, the
proposed architecture enhances efficiency and reliability in IoS communications.

3.1.1 IoS Communication Challenges

As illustrated in Fig. 3.1, space communications operate in environments fundamentally
different from terrestrial networks. Near-Earth orbital networks face extreme dynamics,
with LEO satellites typically moving at approximately 7.8 km/s, creating rapidly
changing network topologies and significant Doppler effects. Meanwhile, interplanetary
links experience extraordinary path losses (exceeding 200dB) and propagation delays
ranging from 4-25 minutes for Earth-Mars communications, conditions where traditional
Shannon-based approaches become inefficient or impractical [6].

Deep space communications further extend these challenges. For missions to
outer planets within our solar system, round-trip light times can reach several hours,
with severely constrained power budgets and limited data rates. Such scenarios
represent significant technical challenges, where efficient information transfer becomes
increasingly critical. Scientific missions generate substantial data volumes, including
imagery, spectroscopy, and various sensor measurements, yet can transmit only a
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Fig. 3.1 Semantic communication architecture for Earth–Mars–deep space links within
the IoS framework. Key components include orbital satellites (LEO/GEO and relays),
inter-satellite links, processing nodes, and surface assets (orbiters, landers, rovers),
together with environmental stressors (radiation, solar wind, dust storms) that shape
system design and operations.

fraction back to Earth, creating a fundamental information bottleneck that conventional
communication paradigms struggle to address.

The physical space environment introduces additional complexities. Signals travers-
ing the ionosphere (60-1000 km altitude) encounter frequency-dependent refraction and
scintillation, particularly affecting sub-3 GHz transmissions [77]. Deep space links face
periodic solar plasma interference, cosmic radiation, and signal degradation across vast
distances, while planetary and lunar surface networks must contend with harsh local
conditions including dust storms, extreme temperature variations, and challenging
terrain.

Space platforms operate under severe resource constraints, with strict limitations
on power generation, computing capabilities, thermal management, and hardware
redundancy. These limitations necessitate fundamentally rethinking how information is
processed and transmitted across space, particularly for long-duration missions where
communication windows may be brief, unpredictable, or separated by extended periods
without contact [5].
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3.1.2 Essential Requirements for IoS Communication

To effectively address the unique communication challenges inherent to the IoS, next-
generation space communication systems must meet several critical requirements that
surpass conventional terrestrial approaches. These essential requirements can be
summarized into four dimensions:

Prioritized Data Management: Due to limited transmission windows and
bandwidth constraints in space, IoS systems must differentiate mission-critical data from
routine transmissions. Critical information, such as emergency telemetry, vital scientific
discoveries, or operational alerts, should be prioritized over standard measurements,
ensuring timely and efficient utilization of available communication resources.

Adaptive Temporal-Spatial Operation: Unlike terrestrial networks, IoS net-
works must dynamically adapt their configurations in response to rapidly changing
environmental conditions, mission phases, and communication opportunities. This
adaptability becomes especially critical during deep space missions, where spacecraft
encounter diverse operational contexts over extended timeframes. Consequently, delay-
tolerant networking (DTN) protocols must integrate semantic awareness to intelligently
manage data priority based on content relevance and contextual urgency, rather than
solely relying on traditional metrics such as arrival time or data format.

Autonomous Edge Intelligence: Considering the extensive signal propagation
delays experienced in deep space missions—often ranging from minutes to hours—real-
time Earth-based control becomes impractical. Therefore, IoS communication ar-
chitectures must enable autonomous edge intelligence, empowering space assets to
independently evaluate and determine data relevance. Such autonomy involves local
semantic processing, real-time decision-making regarding data transmission priorities,
and onboard operational adjustments without continuous Earth intervention.

Optimized Resource Utilization: Given stringent power and spectrum con-
straints, IoS communication systems must maximize information value while minimiz-
ing energy and bandwidth consumption. Particularly in deep space scenarios, where
spacecraft operate with severely limited energy resources and encounter considerable
propagation losses, novel communication techniques are required to deliver maximal
semantic value using minimal resources. These solutions must ensure sustainable and
reliable information exchange throughout mission lifetimes.
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Fig. 3.2 Hierarchical satellite networking architecture of the semantic-enabled IoS.

3.1.3 Semantic Communication as Enabler

Semantic communication emerges as a key enabler for IoS, working alongside ad-
vanced coding, modulation, and networking technologies to address these fundamental
challenges through three primary mechanisms:

The environment-aware semantic processing mechanism extracts and prioritizes
task-relevant information from raw data, reducing transmission volume while preserving
mission-critical content. This capability enables deep space probes to identify and
prioritize significant observations for Earth notification, while filtering routine data
that conforms to expected parameters. Such processing can substantially reduce
communication requirements for bandwidth-constrained links spanning Mars to outer
solar system missions, while ensuring important discoveries reach Earth despite distance
constraints.

Building upon this foundation, adaptive semantic encoding leverages contextual
understanding to optimize resource allocation across diverse space segments. As shown
in Fig. 3.1, this approach enables efficient communication even in challenging inter-
planetary scenarios affected by solar wind and radiation. The figure demonstrates
Earth-Mars-Deep space communications as a representative case, with the supporting
relay infrastructure detailed in Fig. 3.2 illustrating tiered node coordination across or-
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bital regimes. The principles apply to broader deep space missions—semantic encoding
can compress information to essential meanings, achieving significantly improved data
efficiency while preserving scientific value.

Complementing these capabilities, distributed intelligence frameworks enable collab-
orative operations through efficient model parameter sharing among space assets. The
hierarchical relay architecture in Fig. 3.2 exemplifies how orbital layers synergistically
implement these frameworks, preserving bandwidth while enhancing system capabilities.
This approach creates a semantic knowledge network spanning from Earth orbit to
deep space missions. The architecture maintains resilient operations that persist during
extended communication outages, allowing distant spacecraft to operate with increased
autonomy when direct Earth communication is unavailable.

3.2 Semantic-Empowered IoS: Architecture and
Standardization

The integration of semantic communication into the IoS requires a structured and
scalable architecture capable of supporting multi-modal data acquisition, adaptive infor-
mation transmission, and mission-driven decision-making. In contrast to conventional
space communication systems, which rely heavily on syntactic-level data exchange, the
proposed architecture employs semantic intelligence to enhance operational efficiency,
resilience, and interoperability across diverse space infrastructures. By organizing the
system into distinct functional layers, the architecture enables real-time adaptability,
supports legacy compatibility, and optimizes task-specific performance—attributes
essential for intelligent and scalable deep space missions. Fig. 3.3 presents the proposed
three-layer semantic architecture, which addresses these requirements through the
following components:

• Data Layer: Collects heterogeneous sensor inputs, including imaging, telemetry,
and spectral data, and performs on-board feature extraction and cross-modal
fusion using lightweight neural models. Adaptive caching ensures retention of
mission-critical information during connectivity disruptions.

• Transport Layer: Executes task-driven semantic encoding and channel-adaptive
transmission with hybrid error correction. Standardized metadata enables flexible
delivery while maintaining interoperability and semantic fidelity.
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• Application Layer: Interprets semantic data through domain-specific knowl-
edge bases and supports real-time, context-aware decision-making. Continuous
knowledge refinement ensures autonomous adaptation to dynamic mission envi-
ronments.

3.2.1 Data Layer

The data layer forms the foundational infrastructure for raw data collection and pre-
processing in the IoS semantic communication framework, orchestrating a four-stage
pipeline to transform heterogeneous inputs into task-ready semantic features.

Multi-modal data acquisition is achieved through ISAC technology, which synchro-
nizes heterogeneous sensor systems, including imaging devices (e.g., optical/thermal
cameras), telemetry units, and spectral analyzers, to capture diverse data types such
as images, text, telemetry signals, and spectral measurements. To enhance this acquisi-
tion process, emerging reconfigurable intelligent surfaces (RIS) provide physical-layer
enhancements for robust data collection. Mounted on orbital platforms, these metama-
terial arrays dynamically reshape wireless propagation characteristics through real-time
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beamforming. During lunar occultation periods when direct Earth communication
is blocked, RIS-equipped relay satellites can maintain data links between surface
probes and orbital assets by creating synthetic reflection paths, a capability critical for
hyperspectral data transmission requiring preserved semantic features.

Building on the acquired data, feature extraction and fusion employ lightweight
neural networks (CNNs, RNNs, or Transformers) deployed directly on satellites or
spatial nodes. These models perform localized processing to extract spatial-temporal
features from raw data, such as identifying geological structures with CNNs or analyzing
telemetry trends with RNNs. Cross-modal fusion mechanisms further combine features
from different data streams (e.g., aligning image regions with spectral signatures) to
generate unified semantic representations.

Following feature fusion, data pre-processing and filtering ensures data quality
through noise reduction, anomaly detection, and redundancy removal. Telemetry data
is filtered in real time to transmit only critical anomalies like orbital deviations, while
imaging data is cleansed of sensor noise and compressed by retaining mission-critical
areas such as space debris or thermal anomalies.

To address intermittent connectivity challenges introduced by pre-processing, Data
Storage and Management implements adaptive buffering and caching strategies. Crit-
ical semantic data (e.g., detected anomalies) is stored in non-volatile memory with
prioritized retention, whereas transient raw data are cached temporarily in overwritable
buffers. This tiered approach guarantees the persistence of essential information
through communication blackouts. By systematically integrating acquisition, feature
extraction, filtering, and storage, the data layer delivers refined, task-ready semantic
inputs to the transport layer while operating within stringent resource constraints of
space environments.

3.2.2 Transport Layer

The transport layer serves as the semantic-aware communication core, ensuring efficient
and reliable information exchange across space networks through task-driven encoding,
adaptive transmission, and semantic robustness mechanisms.

Semantic encoding employs neural architectures to convert multi-modal data into
task-oriented compact representations. An embedding layer maps raw inputs into
a unified semantic space, capturing high-level features, while a transformer encoder
extracts cross-modal correlations through self-attention mechanisms. A dense layer
filters mission-critical features, suppressing noise and amplifying essential patterns.
These compressed representations become the foundation for adaptive transmission,
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where the layer dynamically adjusts encoding granularity (e.g., reducing transformer
layers during signal attenuation) and prioritizes data streams based on a triage of
factors: real-time channel quality, satellite positional relationships, and mission urgency.

Building on this adaptive framework, semantic decoding reconstructs information
through context-aware neural modules. A reshape layer restores compressed vectors
into structured formats, while a transformer decoder fills missing regions via positional
encoding. A softmax layer resolves ambiguities through probabilistic outputs. Crucially,
this decoding phase integrates semantic error correction, where domain knowledge
validates consistency, ensuring fidelity even with partial data corruption.

Based on the aforementioned semantic encoding and decoding framework, the system
further achieves real-time transmission adjustments by leveraging compressed semantic
representations to dynamically refine encoding granularity according to channel quality,
satellite positioning, and mission urgency, ensuring that high-priority data like collision
warnings receive dedicated bandwidth while routine telemetry adopts a lighter mode.
Simultaneously, context-aware error correction during decoding effectively identifies
and replaces anomalies, such as implausible lunar atmospheric pressure readings, with
context-derived defaults to maintain high semantic fidelity even with partial data
loss, while embedded standardized metadata ensures that legacy ground stations can
accurately parse next-generation probe data, preserving backward compatibility.

Through integrated task-driven encoding, adaptive transmission with granularity
control and priority allocation, knowledge-guided error correction, and standardized
metadata, the transport layer ensures reliable space network operations. This cohe-
sive framework maintains semantic fidelity during bandwidth fluctuations, resolves
data anomalies through domain constraints, and enables cross-generational system
interoperability in challenging communication environments.

3.2.3 Application Layer

The application layer serves as the mission-centric intelligence core, driving a three-phase
workflow, interpretation, decision, and evolution, to translate semantic information
into context-aware decisions and sustained knowledge adaptation.

Semantic interpretation initiates task execution by aligning incoming semantic
data with domain-specific knowledge bases. Planetary surface imagery is analyzed
against geological databases to identify landing hazards, while spectral telemetry
cross-references mineralogical models to detect anomalies, enabling applications like
Martian dust storm prediction or equipment health diagnostics through anomaly
pattern recognition.
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Building on these interpreted semantics, contextual decision making dynamically
generates actionable commands. Satellite swarms reroute formations based on proximity
telemetry risks, while rovers adjust navigation paths for terrain obstacles. Concurrently,
emergency protocols prioritize resource allocation, such as redirecting orbital assets to
monitor volcanic eruptions, using real-time threat severity assessments.

To close the optimization loop, knowledge base update refines repositories through
feedback-driven adaptation. Mission metrics (e.g., asteroid detection false alarms)
and operational data (e.g., model inference accuracy) are analyzed to update both
local and global knowledge bases. This tri-phase cycle, interpretation to contextualize
data, decision-making to trigger actions, and knowledge evolution to optimize future
responses, ensures autonomous adaptation to dynamic space environments while
maintaining alignment with long-term exploration objectives.

3.2.4 Standardization and Interoperability Considerations

The deployment of a semantic-enabled IoS requires robust standardization and seamless
interoperability across heterogeneous space assets. To achieve this, the following key
aspects must be addressed:

Unified Semantic Message Format: A key step is to define a CCSDS/ITU-
aligned semantic packet format, co-developed with industry stakeholders, which en-
capsulates domain-specific semantic tags (e.g., telemetry, alert, scientific-observation),
task identifiers, and adaptive metadata fields [79]. This format must adhere to IEEE-
ISTO interoperability guidelines to ensure semantic consistency across heterogeneous
assets, while allowing vendor-specific extensions through reserved fields to prevent
fragmentation.

Compatibility with Existing Standards: The architecture integrates a two-way
translation layer, endorsed by CCSDS and IEEE working groups, to bidirectionally
convert legacy data into semantic packets. This layer embeds versioning control and
fallback mechanisms, enabling backward compatibility with legacy satellites while
providing a migration path for phased adoption. Compliance with ITU’s semantic
interoperability framework is prioritized to align with global deployment roadmaps.

Interoperability and Future Expansion: The modular architecture implements
standardized plug-in interfaces to integrate emerging technologies, such as AI-enhanced
sensors or quantum relays. The metadata schema for each module follows ISO / IEC
21838-compliant ontology templates, ensuring interoperability between vendors [5]. To
prevent divergent implementations, a mandatory semantic conformance certification
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Fig. 3.4 Illustration of semantic-based Mars surface exploration under dust storm
conditions.

process, jointly administered by CCSDS and IEEE, is enforced for all third-party
extensions.

3.3 Experiment and Evaluation

To demonstrate the practicality and effectiveness of the proposed semantic commu-
nication architecture, we present a representative deep space scenario focusing on
semantic-based monitoring of Mars dust storms, as illustrated in Fig. 3.4. This scenario
highlights the capability of the architecture to reliably detect, interpret, and commu-
nicate mission-critical events under extreme latency, limited bandwidth, and severe
environmental interference conditions characteristic of interplanetary exploration. Such
practical application underscores the significant advantages offered by semantic-enabled
IoS architectures in addressing realistic operational challenges for future space missions.

In this deep space scenario, Mars surface devices, such as rovers and landers,
monitor environmental conditions during dust storms that can disrupt operations
by obscuring solar panels, limiting mobility, and interfering with radio signals [82].
Real-time data collection and transmission under these harsh conditions are challenging.
To address this, we implement the proposed semantic communication architecture
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through its three-layer framework, combining ISAC with standardized protocols to
enhance efficiency, reduce resource demands, and ensure backward compatibility. A
key innovation lies in repurposing unavoidable communication signal distortions, such
as signal attenuation and scattering caused by dust particles, as indirect environmental
metrics, thereby enabling effective real-time storm characterization and monitoring
without imposing additional resource burdens.

As illustrated in Fig. 3.5, the data layer leverages ISAC enabled with Terahertz
(THz) to collect dust storm data in real time through opportunistic signals. As Mars
devices communicate with each other and with orbiting relay satellites, their radio
signals interact with dust particles, experiencing attenuation, scattering, and propaga-
tion delays. Rather than treating these distortions as mere interference, the system
repurposes them as indirect storm metrics (e.g., dust density along communication
paths). These metrics are then combined with direct sensor measurements such as
wind speed, particle concentration, and visibility through signal inversion techniques
and a predefined attenuation-to-concentration model. This approach enables real-time
storm severity estimation without requiring additional hardware. A lightweight CNN,
optimized for edge deployment on Mars devices, subsequently fuses these multi-modal
inputs to extract high-level semantic features. These features are systematically en-
coded into a knowledge base, which dynamically aggregates spatiotemporal storm
patterns across missions through attention-weighted semantic embeddings. By process-
ing data locally, the system minimizes the need to transmit large volumes of raw data,
thereby conserving bandwidth and energy for critical operations.

After local extraction of semantic features, the transport layer packages them into
compact, mission-aware representations, which a Transformer-based model then con-
verts into efficient semantic packets. These packets are transmitted from Mars devices
to Earth via relay satellites using a CCSDS-compliant format, ensuring compatibility
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with existing communication infrastructures. This efficient encoding optimizes band-
width usage and facilitates integration with legacy ground stations while supporting
the gradual adoption of semantic communication techniques.

At Earth-based control centers, the application layer decodes the semantic packets
using context-aware neural modules and domain-specific knowledge bases tailored to
Mars’ unique conditions. This decoding process reconstructs the transmitted features
into actionable insights, such as identifying storm patterns and assessing their impact
on mission operations. For example, alerting controllers that a dust storm is obstructing
a planned rover path. Continuous updates to the knowledge bases further refine the
decoding process, supporting adaptive and real-time decision-making.

This semantic communication framework offers transformative benefits for deep
space missions by significantly reducing data transmission volumes while maintaining
high accuracy. It addresses the bandwidth, energy, and latency challenges of Mars
exploration. The dual use of communication signals for both data transmission and
environmental sensing reduces the need for additional sensors, thereby lowering power
consumption. Furthermore, the CCSDS-compliant packet format ensures smooth
integration with both modern and legacy ground stations. Overall, this approach
enhances system resilience, operational efficiency, and scientific discovery in the extreme
environment of Mars.

Fig. 3.6 quantitatively evaluates the energy efficiency benefits of the proposed
semantic communication architecture in the Mars dust storm monitoring scenario.
Compared to conventional raw data transmission, the semantic approach significantly
reduces transmitted data volume, thereby enabling up to 50 times more transmissions
per battery charge. Notably, while conventional methods fail to meet the required
180-day mission duration at lower data rates (e.g., 22 days at 100 bps and 111 days
at 500 bps), the semantic communication architecture consistently surpasses this
threshold across all data rates. This directly addresses the severe energy constraints
and operational reliability demands of Mars surface exploration, ensuring long-term
mission sustainability.

Beyond the presented Mars scenario, our proposed semantic architecture can be
broadly applied to various other challenging space exploration missions. Potential
applications include semantic-driven asteroid characterization, where critical surface
features and hazards can be efficiently encoded and transmitted back to Earth, and lunar
exploration missions, enabling real-time anomaly detection in complex lunar surface
operations. Additionally, the architecture is well-suited for deep space observatories,
facilitating semantic extraction and transmission of astronomical event data, such as
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Fig. 3.6 Energy efficiency analysis for Mars dust storm monitoring scenario. Mission
duration (days, logarithmic scale) is shown for 100/500/2000 bps; the red dashed line
marks the minimum requirement.

transient phenomena. These examples further underscore the versatility and potential
of our semantic-enabled architecture in addressing diverse operational challenges within
future IoS missions.

3.4 Summary

This chapter has presented a comprehensive vision for semantic communication in the
6G IoS, outlining a novel architecture designed to meet the stringent demands of space-
based communication environments. By shifting the communication paradigm from
conventional bit-level transmission to meaning-driven semantic exchange, the proposed
framework significantly enhances network efficiency, reliability, and adaptability in
handling multi-modal data under challenging conditions. Through illustrative deep
space scenario, we demonstrated the practicality and effectiveness of our semantic-
enabled IoS architecture. Despite promising advancements, several critical challenges,
including efficient multi-modal semantic fusion, adaptive real-time semantic encoding,
standardization, and robustness to semantic errors, require further research. Addressing
these issues through collaborative research will be pivotal in transforming IoS from
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passive relay infrastructures into intelligent, context-aware communication networks
capable of supporting future space missions and global connectivity objectives.





Chapter 4

Internet of Agents: A New
Semantic-Aware Communication
Paradigm for LLMs

4.1 IoA: New Paradigm and Challenges

4.1.1 Motivation of LLM Agent Networks

Large language models (LLMs) such as ChatGPT, LLaMA, DeepSeek, and Gemini
have shifted AI from single-task utilities to autonomous agents capable of perception,
reasoning, and action [62, 29]. The Internet of Agents (IoA) denotes a semantic-aware
communication paradigm in which heterogeneous LLM-driven entities interoperate by
exchanging task-level messages that encode intents, beliefs, and plans rather than raw
observations [61]. The IoA paradigm comprises an agent layer that maintains local world
models and tool capabilities, a semantic messaging plane that transports structured
intent and state using shared ontologies, and a coordination layer that provides
capability registration and discovery, task allocation and orchestration, consensus and
conflict resolution, and incentive and policy enforcement [86]. This organization aligns
communication with mission objectives, reduces payload to decision-relevant content,
and supports ad hoc cooperation across virtual and physical environments [12].

Realizing IoA raises concrete engineering challenges. Interoperability requires
common schemas and ontologies so that independently developed agents interpret
intents and state consistently across devices, platforms, and administrative domains.
Governance demands identity management, access control, provenance, and account-
ability. Wireless operation introduces variability in bandwidth, latency, and energy that
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constrains message size, reliability, and cadence. Application diversity in multi-robot
logistics, connected vehicles, and clinical decision support necessitates adaptive allo-
cation, robust consensus under partial information, and conflict handling under tight
timing constraints [83]. These characteristics create requirements for a communication
substrate that preserves data locality, synchronizes agent knowledge to keep semantic
interpretations aligned, and remains efficient under heterogeneous network conditions.

4.1.2 Wireless Federated Learning as an Enabler

Wireless federated learning enables geographically distributed agents to improve a
shared model by exchanging model updates instead of raw data, thereby preserving
data sovereignty and reducing backhaul traffic [15]. In the federated large language
model (FedLLMs) setting, wearable devices, vehicles, and IoT nodes fine-tune local
models on private textual and telemetry data and periodically upload model updates to
an edge coordinator for aggregation; the aggregated model is redistributed for the next
round [28]. Iterative aggregation produces a unified model that captures heterogeneous
knowledge while keeping sensitive records on device, which yields consistent generation
and interpretation of semantic messages across agents.

Efficiency and privacy in wireless deployments are supported by update compression
and sparsification, client scheduling under variable connectivity, reliable transport over
intermittent links, and secure aggregation that conceals individual updates from the
coordinator [72]. Using federated learning as the substrate satisfies IoA requirements for
data locality and model consistency, provides a scalable path to collective intelligence,
and aligns the semantics used in intent and state messages without centralizing raw
data. The reliance on update exchange over wireless channels, however, introduces
attack surfaces and motivates a careful treatment of resilience and confidentiality in
FedLLMs coordination.

4.1.3 Security and Privacy Challenges

Recent advancements in wireless federated learning have enabled the deployment of
LLMs across diverse wireless communication networks [15]. Within the FedLLMs
paradigm, entities such as wearable sensors in smart healthcare, autonomous vehicles,
and IoT devices, interconnected via wireless infrastructures, can locally fine-tune LLMs
on private textual and telemetry data before uploading local model updates to a
coordinating edge server [28]. Through periodic aggregation of local model updates,
FedLLMs construct a unified global model that captures the heterogeneous knowledge
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of all clients. This decentralized training approach leverages wireless networks to ensure
that raw data remain on-device, thereby adhering to strict privacy and data-residency
requirements while reducing backhaul communication overhead. Therefore, FedLLMs
provide a privacy-preserving solution for applications such as clinical decision support,
cooperative driving, and real-time network coordination [72].

Despite the privacy-preserving advantages of federated learning in FedLLMs, model
poisoning attacks remain a critical resilience threat [22]. Specifically, the attacker
operates by generating and transmitting malicious model updates during the training
process with the intent to manipulate the global model. Unlike conventional data
attacks, the attacker does not need access to raw data; instead, the attack can exploit
the openness of wireless communications and decentralized nature of FedLLMs by
participating as a legitimate but malicious client. The malicious model updates can
be subtle and carefully masked to bypass detection, gradually degrading the model’s
overall performance or causing it to behave undesirably [39].

Recently, many defense methods have been developed to mitigate model poison-
ing attacks. These methods can be unified under what we term the DiSim-defense
mechanisms: approaches that leverage the Euclidean distance or cosine similarity to
identify statistical outliers in model updates. Typical models include Trimmed-Mean,
Median, and geometric-median aggregations that filter updates based on statistical
properties, as well as Krum, Multi-Krum, and Bulyan that select updates exhibiting
spatial consistency in the parameter space [20, 59]. Unfortunately, most defenses implic-
itly assume that adversarial updates exhibit identifiable statistical anomalies, such as
abnormally large magnitudes or divergent orientations. However, recent sophisticated
adversaries capable of embedding subtle, higher-order correlations that closely mimic
benign update patterns can circumvent these defense mechanisms, resulting in a high
false-negative rate [41].

In this study, graph representation-based model poisoning (GRMP) is developed as
a novel attack strategy that leverages the relational structure among benign model
updates to craft highly evasive adversarial gradients. Rather than relying on simple
perturbations, GRMP embeds benign model updates into a latent graph manifold,
allowing malicious contributions to blend seamlessly with legitimate ones. This struc-
tural alignment enables GRMP to bypass existing DiSim-defense mechanisms, thereby
revealing a critical vulnerability in the current landscape of FedLLMs’ resilience.
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Fig. 4.1 (a) FedLLMs deployment across heterogeneous wireless communication net-
works. (b) Illustrative dialogue demonstrating LLM functionality as a wireless commu-
nication agent, contrasting normal versus poisoned model behaviors.

4.2 Poisoning Attack on Federated LLM Agents

4.2.1 Threat Model and Existing Defense Mechanisms

FedLLMs enable distributed training of LLM across multiple clients while preserving
data privacy through local computation and parameter aggregation on edge servers.
As shown in Fig. 4.1(a), participating nodes exchange model updates rather than raw
data, facilitating construction of a globally optimized model without compromising
sensitive information. This collaborative approach harnesses collective intelligence
from distributed data sources while maintaining strict privacy guarantees, enabling
applications across diverse domains.

In smart healthcare networks, FedLLMs can empower medical institutions to
collaboratively analyze diverse patient populations while ensuring strict compliance with
privacy regulations. For instance, during infectious disease outbreaks, hospitals across
different regions can contribute anonymized patient data to collectively trace disease
origins, model transmission dynamics, and identify optimal treatment protocols, without
disclosing sensitive information. FedLLMs as a collaborative approach can significantly
enhance diagnostic accuracy and facilitate rapid responses to emerging public health
threats. Likewise, autonomous vehicle systems can utilize FedLLMs to aggregate
driving experiences across a wide range of environments, from snow-covered mountain
roads to tropical urban settings, thereby constructing robust safety models. These
models can quickly disseminate adaptive countermeasures throughout global vehicle
fleets in response to novel traffic scenarios or accident patterns, substantially improving
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Fig. 4.2 (a) Illustration of the FedLLMs, where each benign user trains a local model
based on their private data, and the edge server aggregates all local benign updates to
train a global model, which is then broadcast back to local clients for further training.
(b) A legitimate but malicious client uploads a poisoned model update that degrades
the global optimization, thereby influencing the global model and falsifying subsequent
local training.

road safety while preserving the proprietary algorithms of individual manufacturers
[25]. Moreover, in IoT environments, FedLLMs enable coordinated learning across
heterogeneous devices to address complex infrastructure challenges. For example,
traffic sensors, environmental monitors, and surveillance cameras in smart cities can
collaboratively predict and mitigate urban crises, manage emergency traffic flow, and
optimize energy distribution during peak demand periods, all without the need to
centralize sensitive operational data.

However, the distributed architecture of FedLLMs introduces security vulnerabilities
from legitimate but malicious clients who can exploit their authorized access to learn
from benign local updates. Such adversaries can systematically study legitimate update
patterns and generate sophisticated malicious updates that mimic benign characteristics
while embedding harmful payloads. The attack consequences are demonstrated in
Fig. 4.1(b), where a benign LLM generates appropriate responses to user queries, while
a compromised LLM produces harmful outputs that undermine system robustness.

Model Poisoning Attacks in FedLLMs

Fig. 4.2 illustrates the underlying mechanism of model poisoning attacks on FedLLMs.
To comprehend the principles behind such attacks, it is essential to first understand
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the standard federated learning workflow, as depicted in Fig. 4.2(a). In this process,
multiple legitimate clients independently train their local LLMs on private datasets.
Upon completing local training, each client generates model updates and transmits
them to an edge server. The server then performs a global aggregation, typically using
the federated averaging algorithm, which computes a weighted average of the received
updates to produce a refined global model. This updated global model is subsequently
broadcast to all participating clients, forming the basis for the next round of training.
Through this iterative process, FedLLMs facilitate continual model enhancement via
collaborative learning, without requiring exchange of raw data.

However, FedLLMs exhibit an inherent security vulnerability, as illustrated in
Fig. 4.2(b). A malicious client can infiltrate the federated learning by posing as a
legitimate participant. Unlike benign clients that train on authentic local data, the
adversary leverages a carefully crafted attack model to generate malicious updates
designed to manipulate the behavior of the global model. The adversarial updates are
uploaded to the edge server, which, without discrimination, aggregates them alongside
the benign updates from legitimate clients. Consequently, the global model becomes
injected with malicious parameters, effectively transforming it into a poisoned model.
Critically, the compromised global model is then disseminated to all FedLLMs’ clients
for subsequent training iterations. This not only embeds the attacker’s influence
within the global model but also ensures that legitimate clients unknowingly train on
a corrupted model, thereby amplifying and perpetuating the attack’s impact across
the entire federated network.

DiSim-defense Mechanisms

Since the server lacks access to clients’ raw data, most defense mechanisms operate at
the aggregation stage by analyzing the uploaded model updates. Current mainstream
approaches can be broadly categorized as DiSim-defense mechanisms that identify
malicious updates by evaluating their deviations from benign updates using Euclidean
distance or cosine similarity. DiSim-defense mechanisms are based on a key assumption:
that adversarial updates can exhibit statistically distinguishable patterns from benign
ones in high-dimensional parameter space [32]. However, this assumption renders
them susceptible to sophisticated model poisoning attacks, wherein adversaries can
carefully craft malicious updates to emulate the statistical signatures of benign updates,
effectively bypassing detection. This vulnerability can be further exacerbated in
the context of billion-parameter large language models (LLMs), where the immense
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parameter space offers adversaries greater flexibility to embed malicious behavior while
making statistical anomaly detection increasingly difficult.

Distance-based methods, such as Krum and Multi-Krum [20], exemplify the first
category by computing pairwise Euclidean distances between all client updates and
selecting those with the smallest sum of distances to their nearest neighbors, filtering out
geometric outliers that deviate significantly from the benign cluster. However, distance-
based methods are often ineffective in realistic non-IID settings and are vulnerable to
the curse of dimensionality. The second category, similarity-based defenses, operates
by computing cosine similarity between each client update and the global model or
aggregate direction, discarding updates that fall below a predetermined similarity
threshold or exhibit directional misalignment with the collective average [32]. This
approach, in turn, is susceptible to defense-aware adversaries who can craft malicious
updates that mimic the benign direction while still embedding a harmful payload.

The vulnerability of DiSim-defense mechanisms stems from their foundational
assumption that malicious behavior manifests as a detectable statistical anomaly [58].
Such an assumption creates a critical security gap when confronted with advanced
model-based attacks that transition from overt disruption to covert mimicry. By
leveraging generative models capable of learning and reproducing the full statistical
distribution and higher-order correlations of benign updates, adversaries can synthesize
malicious payloads that remain indistinguishable from legitimate contributions under
conventional detection metrics. This inherent limitation renders DiSim-defense mech-
anisms ineffective against attackers who possess the capability to model and exploit
the very statistical patterns these defenses are built upon. As a result, FedLLMs
become susceptible to a novel class of stealthy attacks that operate entirely within the
statistical limits of legitimate client behaviour, thus evading detection and undermining
the integrity of the system.

4.2.2 Graph Representation-based Model Poisoning

Graph Formulation and Generative Model Training

GRMP attack aims to learn the underlying structural patterns of benign model updates.
Specifically, the attacker collects benign local updates from multiple clients over the
communication rounds of FedLLMs. In the attacker, the benign model updates are
then transformed into a graph-based representation, where each update is modeled as
a node and the edges encode relational similarities between updates, as illustrated in
Fig. 4.3. Moreover, a feature matrix is constructed by stacking the flattened parameter
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update vectors, where each node encapsulates the full information of a single benign
update. The corresponding adjacency matrix is generated by computing pairwise
similarities, typically using cosine similarity, between all update vectors. An edge is
formed between two nodes if their similarity exceeds a predefined threshold, thereby
capturing the intrinsic relational topology of the benign update manifold. This graph
construction facilitates the subsequent learning of latent representations that encode
both the individual characteristics of local updates and their higher-order structural
relationships.

With this graph representation, the attacker trains a variational graph autoencoder
(VGAE) to learn the underlying distribution of benign updates. The VGAE consists of
two components: a graph encoder and a graph decoder. The encoder, implemented as
a graph convolutional network, takes the entire graph structure including both feature
and adjacency matrices as input and maps each node into a probability distribution
in the latent space, characterized by mean and variance parameters. The decoder
reconstructs the graph structure from sampled latent representations by computing
inner products between latent vectors for every node pair, followed by a sigmoid
activation function to predict edge probabilities in the reconstructed adjacency matrix.
This formulation enables the VGAE to capture both the structural patterns and
statistical properties of legitimate federated learning updates.

The VGAE is trained by maximizing the reconstruction loss function for adversarial
purposes. This maximization objective focuses on increasing the reconstruction error
to produce dissimilar adjacency matrices. Through this adversarial training process,
the VGAE acquires the capability to synthesize malicious local models that appear
structurally plausible while containing carefully crafted perturbations. The resulting
generative model produces adversarial updates that exploit the learned graph structure
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to effectively disrupt the federated learning aggregation process while maintaining
sufficient similarity to bypass detection mechanisms.

4.2.3 Lagrange Dual Problem and Graph Signal Processing

The VGAE produces a reconstructed adjacency matrix representing correlations among
model updates, instead of a malicious model update. To craft a malicious update, the
attacker can leverage the learned graph structure to shape a weight vector, where a
Lagrange dual optimization and a graph signal processing (GSP) module are developed.
As shown in Fig. 4.3, the attack is formulated as a constrained optimization problem:
maximize the poisoning impact on the global model while constraining the malicious
update remains statistically indistinguishable from legitimate client contributions
to bypass detection. The Lagrange dual approach incorporates stealth constraints
directly into the objective, allowing the attacker to iteratively refine the VGAE’s output
toward an optimal adversarial graph structure without violating detection thresholds.
However, even an adversarial graph structure alone is insufficient, the attacker needs
to reconstruct a model update vector that follows this graph’s patterns. Here, GSP
module comes into play: the attacker decomposes benign model updates into structural
correlations and underlying feature components, then recombines the adversarial graph
structure with genuine feature signals to synthesize a malicious update that embeds
new correlation patterns while remaining grounded in benign characteristics.

Furthermore, the Lagrange dual optimization can be designed to project the
latest benign updates into the VGAE’s learned latent space. Rather than performing
simple reconstruction, the dual formulation enables the attacker to identify an optimal
malicious latent vector whose decoded output maximizes reconstruction loss while
satisfying stealth constraints. This process operates iteratively through the feedback
loop illustrated in Fig. 4.3, converging on an adversarial graph structure that optimally
balances poisoning efficiency and detection evasion.

Upon determining the optimized adversarial latent vector, it is decoded to produce
the malicious graph structure that serves as a blueprint for parameter manipulation.
The GSP module then performs the critical transformation from abstract graph repre-
sentation to a concrete malicious update vector. The GSP module decomposes current
benign model updates into structural correlations and underlying feature components
through graph Laplacian and spectral decomposition. By regenerating the graph
structure adversarially and recombining it with original benign feature signals, the
module synthesizes a malicious update that embeds new correlation patterns while
maintaining statistical characteristics consistent with legitimate contributions. This
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adaptive synthesis process exploits specific model vulnerabilities at each communi-
cation round, such that the poisoned update appears indistinguishable from benign
contributions during federated aggregation. Through this integrated approach, the
VGAE provides the structural blueprint, the Lagrange dual optimizes the balance
between attack impact and stealth, and the GSP module constructs the malicious
update from genuine signals, achieving both effectiveness and invisibility.

4.2.4 Experiment and Evaluation

To evaluate the effectiveness and stealthiness of the GRMP attack, this study conducts
experiments using FedLLMs for text classification. The experiments employ the AG
News dataset from Kaggle, a widely-recognized benchmark dataset containing news
articles across four categories: world, sports, business, and science. This dataset
comprises 120,000 training samples and 7,600 test samples, providing sufficient data
for statistically meaningful results in a federated setting.

This study simulates a federated learning environment with six clients, where two
clients are controlled by attackers. The federation operates for twenty communication
rounds, with each client performing two local training epochs per round using Distil-
BERT as the base model. DistilBERT is a distilled version of BERT that retains 97%
of BERT’s language understanding capabilities while being 40% smaller and 60% faster,
making it particularly suitable for deployment in resource-constrained wireless network
environments [50]. Meanwhile, the edge server employs a mainstream DiSim-defense
approach that sets a dynamic detection threshold based on the statistical properties of
the received updates. This defense approach identifies malicious updates by dynam-
ically adjusting the detection threshold to flag those that deviate significantly from
the expected cosine similarity patterns [22]. The GRMP attack specifically targets the
model’s understanding capabilities for business news articles. The attackers aim to
manipulate the model to misclassify business articles containing financial keywords
(e.g., stock, market, earnings, and profit) as sports news articles.

This study assesses the performance of the GRMP attack using three key metrics.
First, learning accuracy measures the overall classification performance of the global
model, indicating whether the model maintains its functionality for legitimate clients.
Second, attack success rate (ASR) quantifies the percentage of targeted business
articles containing financial keywords that are successfully misclassified as sports
articles, measuring the effectiveness of the GRMP attack. In addition, cosine similarity
analysis evaluates the invisibility of malicious updates by measuring their deviation
from benign updates during the aggregation process. Together, these metrics provide a
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Fig. 4.4 GRMP attack’s impact on learning accuracy and attack success rate over
twenty communication rounds.

comprehensive evaluation framework that captures the attack’s effectiveness, its impact
on model functionality, and its stealthiness against detection mechanisms.

Attack Dynamics and Evasion Analysis

Fig. 4.4 reveals GRMP attack’s impact on learning accuracy and ASR over twenty
communication rounds. The attack exhibits a carefully orchestrated two-phase strategy
that reflects adversarial planning. In the initial stage, attackers deliberately maintain
minimal ASR below 2% while positioning themselves as legitimate clients. This strategic
restraint exploits the temporal dynamics of federated learning, where client reputation
is established through consistent participation across successive rounds. Once sufficient
trust is established, the attack enters its exploitation phase, with ASR dramatically
surging to 60%. Meanwhile, the global model maintains learning accuracy around 83%,
demonstrating GRMP’s ability to preserve overall system performance while selectively
corrupting targeted classification behaviors. This performance preservation is crucial
for attack sustainability, as substantial performance degradation could potentially
reveal the presence of the attacker.

Fig. 4.5 illustrates the cosine similarity evolution of each client over twenty commu-
nication rounds. Despite the DiSim-defense mechanism employing a dynamic threshold,
the similarity evolution demonstrates that the attackers consistently stay above the
adaptive threshold throughout the training process. This result validates our claim
that GRMP exploits the fundamental assumption gap in DiSim-defense mechanism.
Through learning relational structures among benign updates via graph representation
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learning, GRMP attackers generate updates that remain statistically indistinguishable
from benign updates, effectively mimicking the natural similarity decline observed in
legitimate participants.

The numerical results confirm the achievement of primary attack objectives. The
60% ASR on targeted business articles demonstrates successful corruption of the model’s
decision logic, while the complete bypass of similarity-based filtering validates GRMP’s
core innovation of generating malicious updates that mimic legitimate behavior. This
capability stems from GRMP’s exploitation of higher-order statistical relationships that
remain invisible to current defense mechanisms. These findings reveal a fundamental
limitation of existing defenses: approaches that assume malicious behavior manifests
as statistical outliers prove ineffective against adaptive adversaries who understand the
underlying data distribution. Furthermore, the non-IID nature of real-world federated
data creates an unexpected vulnerability. While this characteristic was originally
intended to improve model generalization, sophisticated attackers can exploit it to
conceal malicious activity within natural statistical variation.

The implications of these vulnerabilities extend across diverse FedLLMs deployment
scenarios beyond natural language understanding tasks. Unlike conventional attacks
that induce random errors, model poisoning that manipulates contextual understanding
represents a fundamentally novel threat class that directly targets the core intelligence
of language models. In healthcare applications, such attacks could systematically alter
diagnostic interpretations; in autonomous systems, they could corrupt critical scene
understanding capabilities; in financial services, they could manipulate risk assessment
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algorithms. The success of GRMP despite the presence of active defense mechanisms
highlights critical gaps in current security paradigms and underscores the inadequacy of
statistical anomaly detection methods against adversaries who thoroughly understand
and exploit the legitimate variation inherent in federated learning systems. This reality
necessitates a fundamental rethinking of defense strategies. Future approaches should
shift from statistical analysis toward comprehensive behavioral verification frameworks.

4.3 Security Roadmap for the Internet of Agents

4.3.1 Dual Semantic and Structural Auditing

Future defenses should couple semantic auditing of model behavior with structural
auditing of interclient relationships. Semantic auditing verifies whether an update
preserves task intent and reasoning patterns rather than only its numeric profile. Ex-
plainable analysis can produce low-dimensional semantic fingerprints, such as attention
or saliency heatmaps, that characterize decision focus; an autoencoder trained on be-
nign fingerprints can flag abnormal reconstruction errors and reveal hidden triggers or
backdoors [84]. Structural auditing represents the federation as a similarity graph and
detects suspicious substructures that indicate coordinated or camouflaged manipulation.
Message passing over the client graph can expose coalitions, while trust scoring and
robust aggregation can down-weight implicated nodes and limit their influence [43, 49].
Tight integration of the two audits aligns defenses with IoA’s semantic objectives and
constrains adversaries that exploit higher-order correlations.

4.3.2 Systems, Standards, and Evaluation

Security enhancements require systems support and standardization. Graph-aware
secure aggregation, provenance and attestation for update pipelines, and privacy
mechanisms tailored to large language models are needed to protect confidentiality and
integrity under wireless constraints. IoA deployments need shared ontologies for intents,
beliefs, and plans, semantic headers and metadata for packetization, and conformance
tests that verify cross-vendor interoperability at the semantic layer. Benchmark
suites for federated LLMs in IoA should combine non-IID data generation, mobility,
and intermittent connectivity with red-teaming protocols for structural poisoning and
semantic manipulation. Cross-layer co-design that links contact scheduling, compression
budgets, and semantic utility is essential for scalable and trustworthy agent cooperation.
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4.4 Summary

This chapter defined the Internet of Agents as a semantic-aware communication
paradigm in which heterogeneous LLM-driven entities coordinate by exchanging intent,
belief, and plan messages rather than raw observations. An agent-centric stack and ser-
vices for discovery, orchestration, consensus, and policy enforcement were outlined, and
wireless federated learning was identified as the enabling substrate that aligns model
knowledge while preserving data locality to maintain consistent semantic interpretation
across agents. The security posture of federated LLMs was examined, exposing limita-
tions of distance or similarity based defenses and illustrating a graph representation
based poisoning paradigm that exploits higher-order correlations to evade detection. A
concise roadmap was proposed that combines semantic and structural auditing, graph
aware secure aggregation, provenance and semantic headers for interoperability, and
evaluation protocols that reflect non-IID data, mobility, and intermittent connectivity.



Chapter 5

Conclusion

This thesis advances semantic communication as a unifying design paradigm for
heterogeneous networks within the Internet of Everything. The key contributions of
this thesis are as follows.

Firstly, this thesis develops a semantic-empowered molecular communication frame-
work for biomedical diagnostic tasks in IoBNT, combining a deep encoder-decoder that
extracts, quantizes, and reconstructs semantic features with a probabilistic channel
network that approximates molecular propagation to enable gradient-based training;
experiments demonstrate improved accuracy and robustness over conventional bit-level
baselines. Secondly, this thesis proposes the first semantic communication architecture
tailored to IoS, introducing a three-layer design aligned with DTN/CCSDS practices,
and validates the approach in a representative deep-space scenario on Martian dust
storm monitoring with mission-level gains in efficiency. Lastly, this thesis formalizes
IoA as a semantic-aware communication paradigm for coordinating heterogeneous
LLM agents and identifies federated learning as the enabler for distributed coordina-
tion; this thesis further evaluates the resilience of federated LLMs based on a graph
representation-based model poisoning study, evaluates prevailing defense mechanisms,
and the resulting insights inform a resilience roadmap for future IoA research.

Although the results are encouraging, two main limitations remain. First, the IoBNT
and IoS evaluations rely primarily on simulation and modeling under simplified or
idealized channel assumptions; rigorous validation will require scaling the experiments,
tightening control of operating parameters, and calibrating differentiable channel
surrogates against measurements from realistic bio-nano and deep-space environments.
Second, the IoA resilience study employs relatively small-capacity language models and
offline settings; to obtain operationally meaningful evidence, future analyzes should
incorporate stronger generative backbones, larger-scale federated deployments, and
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real-time model poisoning trials under realistic bandwidth, latency, and heterogeneity
constraints.

Future research will advance along three complementary strands. For IoBNT, we
will model and theorize naturally occurring semantic behaviors in biological systems,
use them to inform task-aligned encoders, and validate the resulting designs in mi-
crofluidic testbeds with measurement-driven calibration. For IoS, we will mature the
technical architecture of semantic communication, clarify its relationship with the open
systems interconnection model, and develop standards-compatible semantic headers and
scheduling that better empower interplanetary links under delay, intermittency, and en-
ergy constraints, including hardware-in-the-loop evaluations. For IoA, we will advance
a heterogeneous Internet of Agents enabled by semantic communication and federated
learning, with emphasis on efficiency, resilience, fairness, and interpretability, and
we will establish benchmarks and protocols for privacy-preserving, Byzantine-robust
coordination in both training and deployment.
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